Collaborative Research: Predicting Micro to Macro-scale Hot-spot and Hot-moment dynamics in Arctic Tundra Ecosystems
合作研究:预测北极苔原生态系统的微观到宏观热点和热点动态
基本信息
- 批准号:2311074
- 负责人:
- 金额:$ 49.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Rapid climate warming in the Arctic is thawing frozen soils, also known as permafrost, which is not only reshaping surface topography but also increasing the release of greenhouse gases to the atmosphere. Due to the speed in which Arctic landscapes are changing, and the massive carbon pools locked in permafrost, improving knowledge of the key interactions between plants and micro-organisms and their impacts on greenhouse gas release is essential for predicting how thawing Arctic soils will contribute to global climate change.The overarching objective of this project is to determine the micro-scale mechanisms driving hot-spot and hot-moment carbon dynamics, for improving predictions of macro-scale carbon balance. We hypothesize that the altered spatiotemporal distribution of degrading nutrient-rich permafrost has and will fundamentally alter the structure and function of northern tundra ecosystems, from microbes to landscapes. This multi-scale interdisciplinary project will transform our knowledge of fundamental plant-soil-microbial interactions that govern past and projected carbon cycle dynamics in permafrost ecosystems, while advancing knowledge of the key biogeochemical consequences of permafrost thaw over space (i.e., plot to landscape) and time (i.e., seasonal to decadal). The spatiotemporal mechanisms of hot-spots and hot-moment carbon dynamics will be characterized using a combination of low and high-precision ground and airborne flux observations to determine the location and assess the magnitude of carbon dioxide (CO2) and methane (CH4) hot-spots. Ground and remote sensing observations will determine the controls on the observed spatial distribution of hot-spots and fluxes, space-for-time analyses of plants, microbes, and landforms, coupled with the timing of permafrost degradation will infer the existence of hot-moments, while incubation experiments will illuminate the mechanisms driving hot-moments across sites across the Arctic Coastal Plain of northern Alaska. The proposed research will therefore provide the foundation for next-generation mechanistic and process-based models to represent novel disturbance regimes in the new Arctic. These research efforts will be complimented by a growing collaborative network of Alaskan native high-school student involvement in Arctic disturbance ecology. Students will use drones to measure their environment and share results across campuses and with the broader scientific community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北极的快速气候变暖是解冻的冷冻土壤,也称为多年冻土,这不仅可以重塑表面地形,而且还增加了温室气体释放到大气中。由于北极景观发生了变化的速度,并且大量的碳池锁定在多年冻土中,从而提高了对植物与微生物之间的主要相互作用的了解及其对温室气体释放的影响,它们对预测融化北极土壤的融化将如何有助于全球气候变化,以确定该项目的过度机构,以确定该项目的过度速度,以确定该机构的过度行动,并驱动了火特的驾驶范围,并加热了驱动式的驾驶量,并加热了驱动式的驱动器。改善宏观碳平衡的预测。我们假设,富含营养丰富的多年冻土拥有的降解的时空分布改变了,并且将从根本上改变北部苔原生态系统的结构和功能,从微生物到景观。这个多尺度的跨学科项目将改变我们对基本植物土壤 - 微生物相互作用的了解,这些相互作用控制了过去的碳循环生态系统中的碳循环动态,同时促进了对永久弗洛斯特(Permafrost)在空间上融化的主要生物地球化学后果的知识(即,对landscape)和时间(即landscape)和时间(i.e.e。热点和热电碳动力学的时空机制将使用低位和高精度地面和空气中通量观测的组合来确定位置并评估二氧化碳(CO2)和甲烷(CH4)热点的幅度。地面和遥感观察将确定对观察到的热点和通量的空间分布的控制,对植物,微生物和地形的空间分析,再加上永久冻土降解的时间,将推断出热量的存在,而孵化实验将逐渐散布众多的均层次,遍布整个机构,遍布众多的机构。因此,拟议的研究将为下一代机械和基于过程的模型提供基础,以代表新北极中的新型干扰制度。这些研究工作将得到不断增长的阿拉斯加本地高中生参与北极干扰生态的协作网络的称赞。学生将使用无人机来衡量其环境并在整个校园和广泛的科学界分享结果。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mario Muscarella其他文献
Mario Muscarella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:62203348
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于无人机遥感成像及分布式数据协作的光伏发电预测理论研究
- 批准号:51907151
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于分布协作式移动边缘计算的VR视频自适应传输优化研究
- 批准号:61901250
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
面向人机共融协作的柔性双臂机器人安全作业机理研究
- 批准号:51575157
- 批准年份:2015
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330759 - 财政年份:2024
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343204 - 财政年份:2024
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Collaborative Research: Prospects and limitations of predicting a potential collapse of the Atlantic meridional overturning circulation
合作研究:预测大西洋经向翻转环流潜在崩溃的前景和局限性
- 批准号:
2343203 - 财政年份:2024
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant
Collaborative Research: New Approaches to Predicting Long-time Behavior of Polymer Glasses
合作研究:预测聚合物玻璃长期行为的新方法
- 批准号:
2330760 - 财政年份:2024
- 资助金额:
$ 49.89万 - 项目类别:
Standard Grant