RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
基本信息
- 批准号:2229394
- 负责人:
- 金额:$ 27.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph processing is essential in real-world applications such as bioinformatics and social network analysis. Many fundamental graph operations are compute-intensive, for which the PI has successfully developed a series of CPU-scalable graph processing systems following a novel task-based parallel paradigm called T-thinker. However, it is non-trivial to extend this success to a GPU-rich environment due to a much larger gap between IO bandwidth and computing power of GPUs, and due to the unique programming requirements for GPU programs to be scalable. This project will develop a new task-based distributed GPU framework, T-thinkerGPU, and implement three applications on top, including subgraph matching, dense subgraph mining, and frequent subgraph pattern mining. T-thinkerGPU will be tested on the Aurora supercomputer at Argonne National Laboratory (ANL) as well as UAB’s Cheaha supercomputer, and the implementation will exploit modern GPU features including atomic operations, unified shared memory, and dynamic parallelism. This work will establish a solid foundation for long-term collaboration with ANL towards the development of GPU-scalable HPC solutions for various scientific applications. The project will also train a GPU-programming workforce (including a PhD student who will also visit ANL) that is in urgent need in Alabama, and all the proposed tools will be open source.This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4) proposal would provide a fellowship to an Assistant professor and training for a graduate student at the University of Alabama at Birmingham (UAB). GPU supercomputers are increasingly being deployed in place of CPU supercomputers in the hope to benefit from not only significant performance improvement but also energy efficiency. Built on the success of task-based parallel paradigm, T-thinker, for scaling graph processing in a multi-CPU environment, this project aims to investigate novel task-based techniques to scale fundamental compute-intensive graph operations in a multi-GPU environment, especially the exascale Aurora supercomputer at ANL that is based on Intel GPUs. Specifically, the project will first investigate efficient representation schemes that encode and compress the input graph and intermediate subgraph results compactly to reduce memory footprint and enable coalesced memory access and data reuse in shared memory, such as hashed neighborhood signature and lossless pattern-based contraction. Secondly, the project will design GPU-friendly task-based algorithms for fundamental graph operations including subgraph matching, dense subgraph mining, and frequent subgraph pattern mining, to unleash the massive parallelism enabled by a multi-GPU environment like the Aurora supercomputer. Novel techniques will be investigated such as kernel-as-a-task execution model, a truly hybrid BFS-DFS task scheduling strategy, and several other GPU optimization approaches, which will be combined into a unified programming framework, T-thinkerGPU, with extendibility in mind to facilitate the development of GPU-scalable task-based algorithms for other graph operations in the future. Finally, the developed GPU programs will be extensively evaluated on Aurora (with Intel GPUs) and UAB’s Cheaha supercomputer (with Nvidia GPUs), using public benchmarks and scientific applications at ANL and UAB, and the code will be released on GitHub.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形处理在生物信息学和社交网络分析等现实世界应用中至关重要,许多基本图形操作都是计算密集型的,为此,PI 遵循一种新颖的基于任务的并行范例,成功开发了一系列 CPU 可扩展的图形处理系统。然而,由于 GPU 的 IO 带宽和计算能力之间存在更大的差距,并且由于 GPU 程序具有可扩展性的独特编程要求,因此将这一成功扩展到 GPU 丰富的环境中并非易事。 。这项目将开发一个新的基于任务的分布式GPU框架T-thinkerGPU,并在其上实现三个应用,包括子图匹配、密集子图挖掘和频繁子图模式挖掘,T-thinkerGPU将在阿贡国家实验室的Aurora超级计算机上进行测试。实验室 (ANL) 以及 UAB 的 Cheaha 超级计算机,其实现将利用现代 GPU 功能,包括原子操作、统一共享内存和动态并行性。这项工作将为双方的长期合作奠定坚实的基础。 ANL 致力于为各种科学应用开发 GPU 可扩展的 HPC 解决方案,该项目还将培训阿拉巴马州急需的 GPU 编程人员(包括一名也将访问 ANL 的博士生),并且所有提议的工具都将得到满足。这项研究基础设施改进 Track-4 EPSCoR 研究员 (RII Track-4) 提案将为越来越多的阿拉巴马大学伯明翰分校 (UAB) 的助理教授提供奖学金,并为研究生提供培训。正在部署到位该项目旨在研究基于任务的并行范例 T-thinker 的成功,用于在多 CPU 环境中扩展图形处理。为了在多 GPU 环境中扩展基本计算密集型图形操作的新颖的基于任务的技术,特别是 ANL 的基于英特尔 GPU 的百亿亿级 Aurora 超级计算机,该项目将首先研究对输入进行编码和压缩的高效表示方案。图和中间子图紧凑的结果,以减少内存占用,并在共享内存中实现合并内存访问和数据重用,例如哈希邻域签名和基于无损模式的收缩。 其次,该项目将为包括子图匹配在内的基本图操作设计 GPU 友好的基于任务的算法。 、密集子图挖掘和频繁子图模式挖掘,以释放由 Aurora 超级计算机等多 GPU 环境实现的大规模并行性。将研究诸如内核即任务执行模型(真正的混合)的新技术。 BFS-DFS任务调度策略以及其他几种GPU优化方法,将被组合成一个统一的编程框架T-thinkerGPU,并考虑到可扩展性,以方便开发用于其他图操作的GPU可扩展的基于任务的算法最后,开发的GPU程序将在Aurora(配备Intel GPU)和UAB的Cheaha超级计算机(配备Nvidia GPU)上进行评估,使用ANL和UAB的公共基准和科学应用,并主要发布代码。 GitHub。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Faster Depth-First Subgraph Matching on GPUs
GPU 上更快的深度优先子图匹配
- DOI:
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Yuan, Lyuheng;Yan, Da;Han, Jiao;Ahmad, Akhlaque;Zhou, Yang;Jiang, Zhe
- 通讯作者:Jiang, Zhe
T-FSM: A Task-Based System for Massively Parallel Frequent Subgraph Pattern Mining from a Big Graph
T-FSM:一种基于任务的大图大规模并行频繁子图模式挖掘系统
- DOI:10.1145/3588928
- 发表时间:2023-05-30
- 期刊:
- 影响因子:0
- 作者:Lyuheng Yuan;Da Yan;Wenwen Qu;Saugat Adhikari;J. Khalil;Cheng Long;Xiaoling Wang
- 通讯作者:Xiaoling Wang
Systems for Scalable Graph Analytics and Machine Learning: Trends and Methods
可扩展图形分析和机器学习系统:趋势和方法
- DOI:
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Yan, Da;Yuan, Lyuheng;Ahmad, Akhlaque;Zheng, Chenguang;Chen, Hongzhi;Cheng, James
- 通讯作者:Cheng, James
Accelerating k-Core Decomposition by a GPU
通过 GPU 加速 k-Core 分解
- DOI:10.1109/icde55515.2023.00142
- 发表时间:2023-04-01
- 期刊:
- 影响因子:0
- 作者:Akhlaque Ahmad;Lyuheng Yuan;Da Yan;Guimu Guo;Jieyang Chen;Chengcui Zhang
- 通讯作者:Chengcui Zhang
G2-AIMD: A Memory-Efficient Subgraph-Centric Framework for Efficient Subgraph Search on GPUs
G2-AIMD:一种以内存高效的子图为中心的框架,用于在 GPU 上进行高效的子图搜索
- DOI:
- 发表时间:2024-04
- 期刊:
- 影响因子:0
- 作者:Yuan, Lyuheng;Ahmad, Akhlaque;Yan, Da;Han, Jiao;Adhikari, Saugat;Yu, Xiaodong;Zhou, Yang
- 通讯作者:Zhou, Yang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Da Yan其他文献
Lightweight Fault Tolerance in Pregel-Like Systems
预凝胶类系统中的轻量级容错
- DOI:
10.1145/3337821.3337823 - 发表时间:
2019-08-05 - 期刊:
- 影响因子:0
- 作者:
Da Yan;James Cheng;Hongzhi Chen;Cheng Long;P. Bangalore - 通讯作者:
P. Bangalore
A high-fidelity zoning and characterization approach for building energy models in urban building energy modeling
城市建筑能源建模中建筑能源模型的高保真分区和表征方法
- DOI:
10.26868/25222708.2023.1435 - 发表时间:
2023-09-04 - 期刊:
- 影响因子:0
- 作者:
Hanyun Wang;Zhaoru Liu;Changxiang Xu;Jiangjun Tan;Tao Wang;Da Yan - 通讯作者:
Da Yan
MentalSpot: Effective Early Screening for Depression Based on Social Contagion
MentalSpot:基于社会传染的抑郁症有效早期筛查
- DOI:
10.1145/3459637.3482366 - 发表时间:
2021-10-26 - 期刊:
- 影响因子:0
- 作者:
Jah;ad Pirayesh;ad;Haiquan Chen;Xiao Qin;Wei;Da Yan - 通讯作者:
Da Yan
Volatility Estimation in the Era of High-Frequency Finance
高频金融时代的波动率估计
- DOI:
10.4018/978-1-5225-7805-5.ch006 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Sibo Yan;Da Yan - 通讯作者:
Da Yan
Analysis of district cooling system with chilled water thermal storage in hot summer and cold winter area of China
我国夏热冬冷地区冷冻水蓄热区域供冷系统分析
- DOI:
10.1007/s12273-019-0581-x - 发表时间:
2019-11-06 - 期刊:
- 影响因子:5.5
- 作者:
Lun Zhang;Jun Jing;M. Duan;Mingyang Qian;Da Yan;Xiaosong Zhang - 通讯作者:
Xiaosong Zhang
Da Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Da Yan', 18)}}的其他基金
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2313192 - 财政年份:2023
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2106461 - 财政年份:2021
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
CRII: OAC: Scalable Cyberinfrastructure for Big Graph and Matrix/Tensor Analytics
CRII:OAC:用于大图和矩阵/张量分析的可扩展网络基础设施
- 批准号:
1755464 - 财政年份:2018
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
相似国自然基金
基础学科拔尖学生发展及其影响机制的追踪研究
- 批准号:72304231
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向小样本教育场景的学生知识追踪方法研究
- 批准号:62307006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多精度目标追踪的多模态统一模型
- 批准号:62302328
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前额叶及其脑网络在儿童共情发展中的作用:计算建模与追踪研究
- 批准号:32371103
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
稀疏优化问题中的匹配追踪类和阈值类算法研究
- 批准号:12301393
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4: NSF: Scalable MPI with Adaptive Compression for GPU-based Computing Systems
RII Track-4:NSF:适用于基于 GPU 的计算系统的具有自适应压缩的可扩展 MPI
- 批准号:
2327266 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
RII Track-4: NSF: Bio-inspired Solutions to Prevent Soil Erosion in Farmland and Scouring in Fluvial Regions
RII Track-4:NSF:防止农田水土流失和河流地区冲刷的仿生解决方案
- 批准号:
2327384 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
RII Track-4:NSF: Spatiotemporal Modeling of Lithium-ion Battery Packs for Electric Vehicle Battery Management Systems
RII Track-4:NSF:电动汽车电池管理系统锂离子电池组的时空建模
- 批准号:
2327409 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
- 批准号:
2327452 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant
RII Track-4: NSF: Advancing High Density and High Operation Temperature Traction Inverter by Gallium Oxide Packaged Power Module
RII Track-4:NSF:通过氧化镓封装功率模块推进高密度和高工作温度牵引逆变器
- 批准号:
2327474 - 财政年份:2024
- 资助金额:
$ 27.56万 - 项目类别:
Standard Grant