Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems

合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理

基本信息

  • 批准号:
    2313192
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Intelligent transportation systems (ITS) utilize smart traffic surveillance and machine learning (ML) technologies to optimize traffic management and guarantee driving safety. Currently, centralized ML is the mainstream learning method in the ITS, where vast amounts of traffic video data among distributed edge devices (e.g., smart traffic cameras and dashcams) are transmitted to a central server to train an ML model, resulting in prohibitive efficiency and privacy concerns. Federated learning (FL) is a promising paradigm that leverages the computing power of distributed devices to enable collaborative training of shared ML models over large-scale data while keeping the data local and safe. Unfortunately, existing FL packages fail to fully support the FL on resource-limited devices, which dominate the road infrastructure edge devices. This project aims to build an edge-friendly cyberinfrastructure that allows FL to be deployed for ITS applications in an efficient, secure, and privacy-preserving manner. The proposed research will bring transformative advances in many transportation applications, such as naturalistic driving study and traffic conflict prediction. The proposed cyberinfrastructure will be deployed for real-world traffic management to enhance transportation agencies’ situational awareness and decision-making capabilities. The proposed software tools will be open source to enhance the research infrastructure for the broad ITS communities. Educational activities include curriculum development, student mentoring, and outreach to K-12 students.The project will establish new theoretical and practical results about the FL from the critical perspectives of efficiency, security, and privacy — three properties necessary for broad adoption and deployment on the massive resource-limited road infrastructure edge devices in the ITS. Specifically, (1) this project will systematically investigate the interplay between the FL and distinct types of efficiency issues in the ITS, such as expensive computation cost, high communication consumption, and low device utilization. (2) This project will provide theoretical and practical security tools for both empirical and certified defenses against malicious attacks on data and models in the ITS. (3) This project will investigate the relationship between FL and privacy in the traffic video data by proposing new theoretically grounded designs and FL architectures, such as privacy-preserving data and model sharing. (4) This project will develop a real distributed testbed with NVIDIA Jetson Nano devices to test the above-proposed methods. These small devices can be deployed in junction boxes and vehicles for FL to serve ITS applications.This project is jointly funded by the Office of Advanced Cyberinfrastructure (OAC) Core Research program and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
智能交通系统(ITS)利用智能交通监控和机器学习(ML)技术来优化交通管理并保障驾驶安全。目前,集中式机器学习是ITS中的主流学习方法,大量交通视频数据分布在分布式边缘设备中。 (例如,智能交通摄像头和行车记录仪)被传输到中央服务器来训练机器学习模型,从而导致效率过高和隐私问题。联邦学习(FL)是一种很有前途的范例,它利用分布式设备的计算能力来实现协作训练。共享的不幸的是,现有的 FL 包无法完全支持资源有限的设备上的 FL,而这些设备在道路基础设施边缘设备中占主导地位。允许以高效、安全和保护隐私的方式将 FL 部署到 ITS 应用中。拟议的研究将为许多交通应用带来变革性进展,例如自然驾驶研究和交通冲突预测。网络基础设施将得到实际部署。 - 世界交通管理增强交通机构的态势感知和决策能力。拟议的软件工具将是开源的,以增强广泛的 ITS 教育活动的研究基础设施,包括课程开发、学生指导和对 K-12 学生的社区推广。将从效率、安全性和隐私的关键角度建立关于 FL 的新理论和实践结果——这三个属性是在 ITS 中的大量资源有限的道路基础设施边缘设备上广泛采用和部署所必需的。具体来说,(1) 这。项目将以某种方式调查 FL 和(2) 该项目将为 ITS 中数据和模型的恶意攻击提供理论和实践安全工具,以进行实证和认证防御。 (3) 该项目将通过提出新的建议来研究 FL 与交通视频数据中的隐私之间的关系。理论基础设计和 FL 架构,例如隐私保护数据和模型共享 (4) 该项目将与 NVIDIA 一起开发一个真正的分布式测试平台。 Jetson Nano 设备用于测试上述方法,这些小型设备可以部署在 FL 的接线盒和车辆中,以服务于 ITS 应用。该项目由高级网络基础设施办公室 (OAC) 核心研究计划和既定计划共同资助。刺激竞争性研究 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Da Yan其他文献

Lightweight Fault Tolerance in Pregel-Like Systems
预凝胶类系统中的轻量级容错
Volatility Estimation in the Era of High-Frequency Finance
高频金融时代的波动率估计
MentalSpot: Effective Early Screening for Depression Based on Social Contagion
MentalSpot:基于社会传染的抑郁症有效早期筛查
A high-fidelity zoning and characterization approach for building energy models in urban building energy modeling
城市建筑能源建模中建筑能源模型的高保真分区和表征方法
  • DOI:
    10.26868/25222708.2023.1435
  • 发表时间:
    2023-09-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanyun Wang;Zhaoru Liu;Changxiang Xu;Jiangjun Tan;Tao Wang;Da Yan
  • 通讯作者:
    Da Yan
Analysis of district cooling system with chilled water thermal storage in hot summer and cold winter area of China
我国夏热冬冷地区冷冻水蓄热区域供冷系统分析
  • DOI:
    10.1007/s12273-019-0581-x
  • 发表时间:
    2019-11-06
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Lun Zhang;Jun Jing;M. Duan;Mingyang Qian;Da Yan;Xiaosong Zhang
  • 通讯作者:
    Xiaosong Zhang

Da Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Da Yan', 18)}}的其他基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
  • 批准号:
    2229394
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Massively Parallel Graph Processing on Next-Generation Multi-GPU Supercomputers
RII Track-4:NSF:下一代多 GPU 超级计算机上的大规模并行图形处理
  • 批准号:
    2229394
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2106461
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CRII: OAC: Scalable Cyberinfrastructure for Big Graph and Matrix/Tensor Analytics
CRII:OAC:用于大图和矩阵/张量分析的可扩展网络基础设施
  • 批准号:
    1755464
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似国自然基金

基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
  • 批准号:
    82304250
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
  • 批准号:
    82300430
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
  • 批准号:
    72302067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
  • 批准号:
    62371157
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向开放域对话系统信息获取的准确性研究
  • 批准号:
    62376067
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403088
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CropDL - Scheduling and Checkpoint/Restart Support for Deep Learning Applications on HPC Clusters
合作研究:OAC 核心:CropDL - HPC 集群上深度学习应用的调度和检查点/重启支持
  • 批准号:
    2403090
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402946
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了