Analysis of Regular and Random Soliton Gases in Integrable Dispersive Partial Differential Equations.

可积色散偏微分方程中规则和随机孤子气体的分析。

基本信息

项目摘要

Nonlinear wave interactions describe phenomena observed throughout science and engineering, from the motion of water waves to fiber optic transmissions to the physics of plasmas relevant to star and fusion reactors. Despite the disparate physical contexts, similar wave patterns emerge, and their behavior can be modeled by the same nonlinear partial differential equations. In applications and real-world measurements, the nonlinear interactions lead to waves patterns of exceeding complexity and apparent randomness. This project will further the understanding of these waveforms by developing techniques to model them as accumulations of special isolated traveling wave solutions, i.e., solitons. The resulting ensembles of many solitons, known as soliton gases, will be studied directly and statistically, when their properties are allowed to behave randomly. The aim is to precisely describe, and ultimately control, the nonlinear wave dynamics observed in applications, for example in fiber optic transmission. The project will provide research training opportunities for undergraduate and graduate students. The project has three main mathematical goals: 1) to build a rigorous analytical description of soliton gases, via characterization of their spectral properties, and use this description to study their statistical properties; 2) to analyze the small dispersion semiclassical limit of the focusing nonlinear Schrodinger equation, as a mechanism for generating integrable turbulence and rogue waves from initial data; 3) to study the long-time behavior of spectrally singular solutions of integrable partial differential equations. The study will involve using and further developing tools from complex and asymptotic analysis, with an emphasis in the Inverse Scattering Transform method. The double scaling limit of the focusing nonlinear Schrodinger equation has the potential to introduce a new class of universality at wave breaking and further the understanding of rogue wave generation. Mathematically, the work on spectrally singular solutions and fat-tailed waves would lead to an extension of Inverse Scattering Transform techniques to broader classes of initial data inaccessible by existing techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非线性波相互作用描述了整个科学和工程中观察到的现象,从水波到纤维传播到光纤传播再到与恒星和融合反应器相关的等离子体物理学。尽管物理背景不同,但类似的波模式出现,并且它们的行为可以通过相同的非线性偏微分方程来建模。在应用和现实世界测量中,非线性相互作用导致波浪模式超出复杂性和明显的随机性。该项目将通过开发技术将它们建模为特殊孤立的波动波解决方案(即孤子群)的积累来进一步了解这些波形。当允许其特性随机行为时,将直接和统计地研究许多孤子的合奏,称为孤子气体。目的是精确地描述并最终控制在应用中观察到的非线性波动力学,例如在光纤传输中。 该项目将为本科生和研究生提供研究培训机会。该项目具有三个主要的数学目标:1)通过表征其光谱特性来构建对孤子气体的严格分析描述,并使用此描述来研究其统计特性; 2)分析焦点非线性schrodinger方程的小分散度半经典极限,作为从初始数据产生可集成的湍流和流氓波的机制; 3)研究可集成偏微分方程的光谱奇异解的长期行为。这项研究将涉及使用复杂和渐近分析的工具并进一步开发工具,重点是反向散射变换方法。聚焦非线性Schrodinger方程的双缩放限制具有在波浪破裂时引入新的普遍性,并进一步了解流氓波产生。从数学上讲,在频谱奇异的解决方案和脂肪波浪方面的工作将导致反向散射转换技术扩展到现有技术无法访问的更广泛的初始数据类别。该奖项反映了NSF的法定任务,并通过评估该基金会的知识绩效和广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Jenkins其他文献

CODEL: Phase III study of RT, RT + Temozolomide (TMZ), or TMZ for newly-diagnosed 1p/19q Codeleted Oligodendroglioma. Analysis from the initial study design.
CODEL:针对新诊断的 1p/19q Codeleted 少突胶质细胞瘤的 RT、RT + 替莫唑胺 (TMZ) 或 TMZ 的 III 期研究。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    K. Jaeckle;Karla V Ballman;M. J. van den Bent;C. Giannini;E. Galanis;Paul D. Brown;Robert Jenkins;J. Cairncross;W. Wick;M. Weller;K. Aldape;Jesse G Dixon;S. K. Anderson;J. Cerhan;J. S. Wefel;M. Klein;S. Grossman;D. Schiff;J. Raizer;F. Dhermain;Donald G. Nordstrom;Patrick J. Flynn;M. Vogelbaum
  • 通讯作者:
    M. Vogelbaum
Learning losses during the COVID‐19 pandemic: Understanding and addressing increased learning disparities
COVID-19 大流行期间的学习损失:理解和解决日益扩大的学习差距
  • DOI:
    10.1002/fer3.21
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anna Alejo;Robert Jenkins;Haogen Yao
  • 通讯作者:
    Haogen Yao
16 - Next Generation Cytogenetics: Genome-wide Mate Pair Sequencing for Detection of Structural Rearrangements and Copy Number Variation
  • DOI:
    10.1016/j.cancergen.2016.05.017
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Umut Aypar;Hutton Kearney;William Sukov;Robert Jenkins;Nicole Hoppman
  • 通讯作者:
    Nicole Hoppman
The <em>bcr</em> Gene in Philadelphia Chromosome Positive Acute Lymphoblastic Leukemia
  • DOI:
    10.1182/blood.v73.5.1307.1307
  • 发表时间:
    1989-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nora Heisterkamp;Robert Jenkins;Stephen Thibodeau;Joseph R. Testa;Ken Weinberg;John Groffen
  • 通讯作者:
    John Groffen
岩手県玉山産水晶の晶相・晶癖変化の解析
岩手县玉山晶体的晶相和晶体习性变化分析
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Koichi Momma;Toshiro Nagase;Robert Jenkins;Yusuke Miyajima;Kenichiro Tani;Akira Ijiri;Sergei Kasatkin;Igor Chekryzhov;Ritsuro Miyawaki,Occurrences and crystal structures of melanophlogite from Sakhalin;Far East Russia;長瀬敏郎 門馬綱一 石橋 隆 浜根大輔 栗林貴弘;吉見桃子 栗林貴弘 長瀬敏郎
  • 通讯作者:
    吉見桃子 栗林貴弘 長瀬敏郎

Robert Jenkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Jenkins', 18)}}的其他基金

United Nations Reform and the Rebuilding of Failed States: A Study of the Formative Stages in the Development of the UN
联合国改革与失败国家的重建:联合国发展形成阶段研究
  • 批准号:
    ES/E012361/1
  • 财政年份:
    2006
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Research Grant
Acquisition of a University Confocal Laser Scanning Microscope System
购置大学共焦激光扫描显微镜系统
  • 批准号:
    9419609
  • 财政年份:
    1995
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Standard Grant
Experimental Program to Stimulate Competitive Research in Wyoming
刺激怀俄明州竞争性研究的实验计划
  • 批准号:
    8610680
  • 财政年份:
    1986
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Continuing Grant
Wyoming Experimental Program to Stimulate Competitive Research - Phase A, Planning Phase
怀俄明州刺激竞争性研究的实验计划 - A 阶段,规划阶段
  • 批准号:
    8513768
  • 财政年份:
    1985
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Standard Grant
Fy 1980 Science Faculty Professional Development Program
1980 财年理学院专业发展计划
  • 批准号:
    8013100
  • 财政年份:
    1980
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Standard Grant
Creation of a Data Bank on Ecological Reserves
建立生态保护区数据库
  • 批准号:
    7520321
  • 财政年份:
    1975
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Contract

相似国自然基金

激励幅度受限的非常规阵列波束综合方法研究
  • 批准号:
    62301414
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Baeyer-Villiger单加氧酶的非常规反应设计与催化机制解析
  • 批准号:
    32301043
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于常规单次扫描的四维锥束CT成像方法研究
  • 批准号:
    82372041
  • 批准年份:
    2023
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
货币金属团簇非常规幻数的理论探索
  • 批准号:
    12304298
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
常规分割放疗通过诱导肺鳞癌分泌腺苷抑制cDC1-CD8+T轴的机制研究
  • 批准号:
    82303700
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Regular HIV Testing and HIV Prevention Among At-Risk Latino Men in the Heartland
对腹地高危拉丁裔男性进行定期艾滋病毒检测和艾滋病毒预防
  • 批准号:
    10523535
  • 财政年份:
    2019
  • 资助金额:
    $ 20.95万
  • 项目类别:
Behaviour of Random Regular Structures
随机规则结构的行为
  • 批准号:
    432513-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 20.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Isoperimetic inequalities for random regular graphs.
随机正则图的等周不等式。
  • 批准号:
    415170-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 20.95万
  • 项目类别:
    University Undergraduate Student Research Awards
Feasibility study for organic spin-valves using regio-regular poly(3-hexylthiophene) and regio-random poly(3-octylthiophene)
使用区域规则聚(3-己基噻吩)和区域无规聚(3-辛基噻吩)有机旋转阀的可行性研究
  • 批准号:
    EP/F023499/1
  • 财政年份:
    2007
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Research Grant
Solvable models on regular and random lattices in statistical mechanics and field theory
统计力学和场论中规则和随机晶格的可解模型
  • 批准号:
    ARC : DP0208481
  • 财政年份:
    2002
  • 资助金额:
    $ 20.95万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了