NSF-AoF: CNS Core: Small: Machine Learning Based Physical Layer and Mobility Management Solutions Towards 6G
NSF-AoF:CNS 核心:小型:面向 6G 的基于机器学习的物理层和移动管理解决方案
基本信息
- 批准号:2224322
- 负责人:
- 金额:$ 39.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
5G evolution and future 6G cellular networks are targeting operations at higher millimeter wave and sub-Tera Hertz (sub-THz) bands due to the availability of large channel bandwidths to further improve data rate, latency, quality-of-service, and reliability. However, the use of these bands for mobile radio access imposes substantial technical challenges, including the quality, cost- and energy-efficiency of the electronics, the extreme path loss and propagation characteristics, and the overall deployment costs to provide indoor and outdoor network coverage with mobility support. Considering these challenges, this project will investigate the utility of machine learning algorithms, that have been successful in solving complex problems in various domains, for designing physical layer technologies and network management procedures, involved in both user equipment and base stations, that aim to improve robustness and reliability of connectivity under mobility. The project’s expected contributions are at the forefront of emerging 6G standard and applications of modern machine learning tools in wireless communications at high frequency bands.The research will address three key thrusts: i) Thrust 1 will develop machine learning assisted and data driven approaches for user equipment beam training and tracking using compressive sensing-based channel probing for low latency and robustness to phased antenna array impairments. In addition, it will accelerate beam training and tracking on the base station side by using deep reinforcement learning for optimizing beam probing strategies based on environment characteristics and user trajectories. The outcome of this thrust will be significant reduction in beam management overhead in the presence of mobility; ii) Thrust 2 will use a novel receiver processing architecture where the signal path exploits convolutional neural network layers in both time and frequency domains to compensate the effects of the power amplifier nonlinearity and phase noise in a wideband orthogonal frequency division multiplexing (OFDM) receiver, while accounting for frequency-selective multipath channel effects. The outcome of this thrust will be improvement in transmitter power efficiency, coverage and bit error probability. iii) Thrust 3 will develop intelligent handover algorithms to minimize disruptions in user connectivity by exploiting position estimates and beam-level reference signal power measurements with distributed deep reinforcement learning while considering user rate requirements and reducing measurement reporting and sharing overheard between base stations. The research methodology will rely on extensive measurements and data set generations using millimeter wave testbeds for the development and evaluation of the proposed solutions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
5G 演进和未来 6G 蜂窝网络的目标是在更高毫米波和亚太赫兹 (sub-THz) 频段上运行,因为可以使用大通道带宽来进一步提高数据速率、延迟、服务质量和可靠性。然而,使用这些频段进行移动无线接入带来了巨大的技术挑战,包括电子设备的质量、成本和能源效率、极端路径损耗和传播特性以及提供室内和室外网络覆盖的总体部署成本和考虑到这些挑战,该项目将研究机器学习算法的实用性,这些算法已成功解决各个领域的复杂问题,用于设计涉及用户设备和基站的物理层技术和网络管理程序。该项目的预期贡献是新兴 6G 标准和现代机器学习工具在高频段无线通信中的应用的前沿。该研究将解决三个关键目标: i) 主旨 1将开发机器学习辅助和数据驱动的使用基于压缩感知的信道探测进行用户设备波束训练和跟踪的方法,可实现低延迟和对相控天线阵列损伤的鲁棒性。此外,它将通过使用深度强化学习来优化波束探测,从而加速基站侧的波束训练和跟踪。基于环境特征和用户轨迹的策略将在存在移动性的情况下显着减少波束管理开销;ii) Thrust 2 将使用一种新颖的接收器处理架构,其中信号路径利用卷积神经网络层。时域和频域,以补偿宽带正交频分复用 (OFDM) 接收器中功率放大器非线性和相位噪声的影响,同时考虑频率选择性多径信道效应。这一推动的结果将是发射机功率的提高。 iii) Thrust 3 将开发智能切换算法,通过利用分布式深度强化学习的位置估计和波束级参考信号功率测量,同时考虑用户速率要求并减少对用户连接的干扰。该研究方法将依赖于使用毫米波测试台进行的广泛测量和数据集生成,以开发和评估所提出的解决方案。该奖项反映了 NSF 的法定使命,并被认为值得通过评估获得支持。利用基金会的智力优势和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danijela Cabric其他文献
Cooperative modulation classification for multipath fading channels via expectation-maximization
通过期望最大化的多径衰落信道的协作调制分类
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:10.4
- 作者:
Jingwen Zhang;Danijela Cabric;Fanggang Wang;Zhangdui Zhong - 通讯作者:
Zhangdui Zhong
Danijela Cabric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danijela Cabric', 18)}}的其他基金
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
- 批准号:
2328947 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Collaborative Research: CNS core: Medium: True-Time-Delay based MIMO System and Testbed for Low-Latency Wideband Beam and Interference Management in Millimeter Wave Networks
合作研究: CNS 核心:中:基于真实时延的 MIMO 系统和毫米波网络中低延迟宽带波束和干扰管理的测试台
- 批准号:
1955672 - 财政年份:2020
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
Circuits and Systems Design for UAV Swarm Enabled Communications
无人机群通信的电路和系统设计
- 批准号:
1929874 - 财政年份:2019
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
NeTS: Small: Coordinated Beam Discovery, Association, and Handover in Ultra-Dense Millimeter Wave Cellular Networks
NeTS:小型:超密集毫米波蜂窝网络中的协调波束发现、关联和切换
- 批准号:
1718742 - 财政年份:2017
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
NeTS: Small: Dynamic Spectrum Access by Learning Primary Network Topology
NeTS:小型:通过学习主网络拓扑进行动态频谱访问
- 批准号:
1527026 - 财政年份:2015
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
CAREER: Cognitive Co-Existence in Heterogeneous Wireless Networks
职业:异构无线网络中的认知共存
- 批准号:
1149981 - 财政年份:2012
- 资助金额:
$ 39.27万 - 项目类别:
Continuing Grant
NeTS: Small:Spatio-Temporal Spectrum Sensing
NetS:小型:时空频谱传感
- 批准号:
1117600 - 财政年份:2011
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225578 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
- 批准号:
2225577 - 财政年份:2023
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: CRUISE: A Cross-system Architecture Design for Autonomous Wireless Networks based on Lifelong Machine Learning
NSF-AoF:CNS 核心:小型:CRUISE:基于终身机器学习的自主无线网络的跨系统架构设计
- 批准号:
2225427 - 财政年份:2022
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core Small: Lean-NextG: Learning to Network the Edge in Next Generation Wireless Networks
NSF-AoF:CNS Core Small:Lean-NextG:学习下一代无线网络中的边缘网络
- 批准号:
2132573 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant
NSF-AoF: CNS Core: Small: AERIAL: Air-to-Ground Channel Modeling and Tracking at Millimeter-Wave
NSF-AoF:CNS 核心:小型:空中:毫米波空对地通道建模和跟踪
- 批准号:
2133662 - 财政年份:2021
- 资助金额:
$ 39.27万 - 项目类别:
Standard Grant