EAGER: Towards robust, interpretable deep learning via communication theory and neuro-inspiration

EAGER:通过沟通理论和神经灵感实现稳健、可解释的深度学习

基本信息

  • 批准号:
    2224263
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Deep neural networks (DNNs) are attaining great success in an increasing array of applications, yet there remain persistent concerns regarding their lack of interpretability and robustness. The standard approach to training DNNs is to optimize an end-to-end cost function based on variants of gradient descent. This simple approach is flexible, allowing innovation in architectures and applications, and scaling to neural networks with a large number of parameters, given enough data and computational power. Such end-to-end, or top-down training, however, does not provide control over, or understanding of, the features being extracted by the layers of the neural networks. The vulnerability of DNNs to adversarial attacks, for example, is a symptom of this phenomenon. The proposed research seeks to address these drawbacks using ideas from communication theory and neuroscience: the goal is to actively shape the features being extracted by individual layers of the neural network, in addition to training the overall network to attain an end-to-end goal. This research will contribute to curricular enhancements in signal processing and machine learning explored via courses, REU projects and senior capstone projects.The proposed technical approach leverages the existing computational infrastructure for training, while imposing layer-by-layer constraints aimed at producing sparse, strong activations. Drawing on ideas from communication theory, the goal is to learn “matched filters” which enhance the “signal-to-noise ratio (SNR)” at neuron outputs at each layer. One may show that this approach is consistent with Hebbian and anti-Hebbian (HAH) learning as posited in neuroscience, in which neurons that are strongly activated for an input are promoted, with less active neurons being demoted. This work posits enhanced robustness via such an SNR-maximizing strategy, together with additional nonlinear transformations such as divisive normalization borrowed from neuroscience. While preliminary visualizations indicate more interpretable neurons, there is reason to expect sparse, strong activations to be more amenable to quantitative interpretation via statistical and information-theoretic analysis. The goal of the proposed research is two-fold: to gain theoretical insight into HAH-based learning via toy models, and to demonstrate practical gains in robustness and interpretability relative to state of the art DNNs. Experimental evaluations will initially be conducted on image datasets which provide standard performance benchmarks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络 (DNN) 在越来越多的应用中取得了巨大成功,但人们仍然担心它们缺乏可解释性和鲁棒性。训练 DNN 的标准方法是根据变体优化端到端成本函数。然而,这种简单的方法很灵活,可以在架构和应用程序上进行创新,并且可以扩展到具有大量参数的神经网络,只要有足够的数据和计算能力即可。 ,不提供控制或理解例如,神经网络各层提取的特征就是这种现象的一个症状,该研究旨在利用通信理论和神经科学的思想来解决这些缺陷。除了训练整个网络以实现端到端目标之外,这项研究还将有助于通过课程探索信号处理和机器学习的课程增强, REU 项目和高级顶点所提出的技术方法利用现有的计算基础设施进行训练,同时施加逐层约束,旨在产生稀疏、强的激活,借鉴通信理论的思想,目标是学习“匹配过滤器”,从而增强“每个强层神经元输出的信噪比(SNR)”可能表明这种方法与神经科学中提出的赫布和反赫布(HAH)学习一致,其中神经元针对输入而被激活。这项工作通过这种信噪比最大化策略以及借用神经科学的分裂归一化等额外的非线性变换来增强鲁棒性,虽然初步的可视化更多地表明了可解释的神经元,但有理由期待稀疏。 ,强激活更适合通过统计和信息理论分析进行定量解释。拟议研究的目标有两个:通过玩具模型获得对基于 HAH 的学习的理论见解。展示相对于最先进的 DNN 在鲁棒性和可解释性方面的实际收益。实验评估最初将在提供标准性能基准的图像数据集上进行。该奖项的法定使命是通过使用基金会的智力优势和评估来进行评估,并被认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Deep Learning via Layerwise Tilted Exponentials
通过分层倾斜指数进行稳健的深度学习
  • DOI:
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Puranik, Bhagyashree;Beirami, Ahmad;Qin, Yao;Madhow, Upamanyu
  • 通讯作者:
    Madhow, Upamanyu
Dynamic Positive Reinforcement For Long-Term Fairness
动态正强化以实现长期公平
Dynamic Positive Reinforcement for Long-Term Fairness
动态正强化以实现长期公平
Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A software framework for training with feature-based costs
通过赫布/反赫布学习实现稳健、可解释的神经网络:基于特征成本的训练软件框架
  • DOI:
    10.1016/j.simpa.2022.100347
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cekic, Metehan;Bakiskan, Can;Madhow, Upamanyu
  • 通讯作者:
    Madhow, Upamanyu
A Dynamic Decision-Making Framework Promoting Long-Term Fairness
促进长期公平的动态决策框架
  • DOI:
    10.1145/3514094.3534127
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Puranik, Bhagyashree;Madhow, Upamanyu;Pedarsani, Ramtin
  • 通讯作者:
    Pedarsani, Ramtin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Upamanyu Madhow其他文献

Slicer Architectures for Analog-to-Information Conversion in Channel Equalizers
用于通道均衡器中的模拟信息转换的限幅器架构
  • DOI:
    10.1109/tcomm.2016.2641445
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Aseem Wadhwa;Upamanyu Madhow;Naresh R Shanbhag
  • 通讯作者:
    Naresh R Shanbhag
Collector Receiver Design for Data Collection and Localization in Sensor-driven Networks
用于传感器驱动网络中数据收集和定位的收集器接收器设计
A Neuro-Inspired Autoencoding Defense Against Adversarial Perturbations
神经启发的自动编码防御对抗性扰动
  • DOI:
  • 发表时间:
    2020-11-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Can Bakiskan;Metehan Cekic;Ahmet Dundar Sezer;Upamanyu Madhow
  • 通讯作者:
    Upamanyu Madhow
Window-based error recovery and flow control with a slow acknowledgement channel: a study of TCP/IP performance
基于窗口的错误恢复和慢速确认通道的流量控制:TCP/IP 性能研究
  • DOI:
    10.1109/infcom.1997.631144
  • 发表时间:
    1997-04-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. V. Lakshman;Upamanyu Madhow;B. Suter
  • 通讯作者:
    B. Suter
Spread-spectrum techniques for distributed space-time communication in sensor networks
传感器网络中分布式时空通信的扩频技术

Upamanyu Madhow的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Upamanyu Madhow', 18)}}的其他基金

RINGS: Massive Extended-Array Transceivers for Robust Scaling of All-Digital mmWave MIMO
RINGS:大规模扩展阵列收发器,用于全数字毫米波 MIMO 的稳健扩展
  • 批准号:
    2148303
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
  • 批准号:
    2215646
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
NeTS: Large: Collaborative Research: GigaNets: A Path to Experimental Research in Millimeter Wave Networking
NeTS:大型:协作研究:GigaNets:毫米波网络实验研究之路
  • 批准号:
    1518812
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Distributed coherence: fundamental building blocks, system concepts, and experimental demonstration
CIF:媒介:协作研究:分布式一致性:基本构建块、系统概念和实验演示
  • 批准号:
    1302114
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
NeTS: Small: Mobile mmWaves: Addressing the Cellular Capacity Crisis with 60 GHz Picocells
NeTS:小型:移动毫米波:利用 60 GHz 微微蜂窝解决蜂窝容量危机
  • 批准号:
    1317153
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
XPLR: MultiGigabit millimeter wave mesh networks: Cross-layer design and experimental validation
XPLR:多千兆毫米波网状网络:跨层设计和实验验证
  • 批准号:
    0832154
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Towards A Theory of Communication With Sloppy Analog-to-Digital Conversion: A Framework for Low-Cost Gigabit wireless
走向一种具有马虎模数转换的通信理论:低成本千兆位无线框架
  • 批准号:
    0729222
  • 财政年份:
    2007
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
TCHCS: COLLABORATIVE RESEARCH: Millimeter-wave MIMO: A New Architecture for Integrated 10-40 Gigabit Wireless/Optical Hybrid Networks
TCHCS:协作研究:毫米波 MIMO:集成 10-40 G 无线/光混合网络的新架构
  • 批准号:
    0636621
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
NeTS-NOSS: Imaging Sensor Nets: from Concept to Prototypes
NeTS-NOSS:成像传感器网络:从概念到原型
  • 批准号:
    0520335
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Distributed Space-Time Communication For Wireless Sensor Networks
无线传感器网络的分布式时空通信
  • 批准号:
    0431205
  • 财政年份:
    2004
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Fbxw7缺失促进EGFR突变肺腺癌向肺鳞癌转分化的功能和机制研究
  • 批准号:
    82303039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深大水库热分层驱动下微塑料垂向迁移特征及其动态影响机制
  • 批准号:
    42377263
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于颅内外同步静息态脑电与多尺度有向脑网络的致痫区定位研究
  • 批准号:
    82371453
  • 批准年份:
    2023
  • 资助金额:
    65 万元
  • 项目类别:
    面上项目

相似海外基金

Towards Motion-Robust and Efficient Functional MRI Using Implicit Function Learning
使用内隐功能学习实现运动稳健且高效的功能 MRI
  • 批准号:
    EP/Y002016/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
ERI: Towards Robust and Secure Intelligent 3D Sensing Systems
ERI:迈向稳健、安全的智能 3D 传感系统
  • 批准号:
    2347426
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Robust ESG data for biodiversity: towards a spatially-sensitive approach to Sustainable Finance
生物多样性的可靠 ESG 数据:采用空间敏感的可持续金融方法
  • 批准号:
    NE/X01634X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Towards Robust Measurements of H0 with Dark Standard Candles
使用深色标准烛光对 H0 进行稳健测量
  • 批准号:
    2307026
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: DP: RI: Towards Scalable, Resilient and Robust Foraging with Heterogeneous Robot Swarms
合作研究:CISE-MSI:DP:RI:利用异构机器人群实现可扩展、有弹性和稳健的觅食
  • 批准号:
    2318683
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了