Towards Motion-Robust and Efficient Functional MRI Using Implicit Function Learning

使用内隐功能学习实现运动稳健且高效的功能 MRI

基本信息

  • 批准号:
    EP/Y002016/1
  • 负责人:
  • 金额:
    $ 20.75万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Functional magnetic resonance imaging (fMRI) is a leading modality to measure brain activity and connectivity. Clinically, it is starting to be used in pre-surgical planning and in assessment of brain function in vegetative state patients. It also recently shows promise in infant cognition research, which holds the key to understanding the origins and functions of the human brain. However, one of the main challenges that constrain the clinical applications of fMRI is its sensitivity to motion, where head movement causes highly deleterious artefacts in fMRI data and can be a major source of error in functional connectivity analysis. This is particularly challenging on infants between the ages of 2 and 48 months, where in many cases half of the data are discarded due to head movement, leading to significant delays and cost for repeated scans. The sustained increase in demand for it would lead to further increased pressures on hospital resources and reduced efficiency of the imaging workflows. Therefore, it is urgent to have techniques and tools to eliminate or reduce the motion effects on fMRI scans.Recently, machine learning (ML) and deep learning (DL) techniques have shown promise to alleviate motion corruption by learning from data to retrospectively correct the motion and artefacts. However, most of these learning-based methods do not specifically focus on fMRI and most existing motion correction approaches for static and structural MRI are not directly applicable to fMRI due to the high memory requirement and application-specific motion artefacts in fMRI. Therefore, there is still a lack of a robust and reliable technique for the problem. With the increasing need and availability of fMRI data and the growing cost for repeated scans due to motion, demand for motion-robust and efficient fMRI are becoming essential.We aim to fill the gap in fMRI research in this project by proposing to investigate motion-robust and efficient fMRI based on novel implicit function learning techniques. The proposed research will integrate and advance state-of-the-art research in machine learning and medical imaging. We will particularly consider motion correction of infant motion trajectories in this study, as infant motion causes substantial data loss in fMRI and represents the most necessary and urgent need. However, as there is not much low-motion infant data available and as they also cannot easily provide motion-free control for validation, we propose to use adult fMRIs for the initial feasibility study, where more data of low motion and better 'ground truth' control can be obtained. The project will create a novel implicit function learning method to learn a prior space for resolution-agnostic motion-free fMRI, investigate integration of the data-driven prior with instance-specific slice-to-volume registration for fast and adaptable motion correction in motion scenarios mimicking infant movement, and evaluate and validate the created approach on data of adult brain fMRI scans with and without infant-like motion. This will conduce to creation of a novel method that enables high-precision, memory-efficient and robust fMRI motion correction with resolution-agnostic volumetric reconstruction. Future research will be extended to infant fMRI given a promising outcome of the project.The project will contribute to knowledge in machine learning, medical imaging and computer vision, by advancing state-of-the-art in both the fundamental and applied research in the multi-disciplinary field. The project will also benefit clinicians and medical image processing researchers especially on fMRI and infant, offering them a fast and reliable motion correction tool that addresses the drawbacks of current techniques. The patients, the healthcare industry and the society will also benefit from the development in medical imaging technologies, with an improved healthcare system and economics resulting from it.
功能磁共振成像 (fMRI) 是测量大脑活动和连接性的主要方法。在临床上,它开始用于手术前计划和植物人状态患者的脑功能评估。最近它在婴儿认知研究中也显示出了前景,婴儿认知研究掌握着理解人脑起源和功能的关键。然而,限制 fMRI 临床应用的主要挑战之一是其对运动的敏感性,其中头部运动会导致 fMRI 数据中高度有害的伪影,并且可能是功能连接分析中的主要错误来源。这对于 2 至 48 个月大的婴儿来说尤其具有挑战性,在许多情况下,一半的数据由于头部运动而被丢弃,导致重复扫描的显着延迟和成本。需求的持续增长将导致医院资源压力进一步增大,影像工作流程效率降低。因此,迫切需要有技术和工具来消除或减少运动对功能磁共振成像扫描的影响。最近,机器学习(ML)和深度学习(DL)技术已显示出通过从数据中学习来回顾性纠正运动损坏的前景。运动和人工制品。然而,大多数基于学习的方法并不专门关注 fMRI,并且由于 fMRI 中的高内存要求和特定于应用的运动伪影,大多数现有的静态和结构 MRI 运动校正方法不能直接适用于 fMRI。因此,仍然缺乏解决该问题的稳健可靠的技术。随着功能磁共振成像数据的需求和可用性不断增加,以及由于运动而导致重复扫描的成本不断增加,对运动稳健和高效的功能磁共振成像的需求变得至关重要。我们的目标是通过提出研究运动功能磁共振成像来填补该项目中功能磁共振成像研究的空白。基于新颖的隐函数学习技术的稳健且高效的功能磁共振成像。拟议的研究将整合并推进机器学习和医学成像领域的最先进研究。在本研究中,我们将特别考虑婴儿运动轨迹的运动校正,因为婴儿运动会导致功能磁共振成像中的大量数据丢失,并且代表了最必要和最紧迫的需求。然而,由于可用的低运动婴儿数据并不多,而且它们也不能轻易提供用于验证的无运动控制,我们建议使用成人功能磁共振成像进行初步可行性研究,其中更多的低运动数据和更好的“地面实况” ' 可以获得控制权。该项目将创建一种新颖的隐函数学习方法,以学习与分辨率无关的无运动 fMRI 的先验空间,研究数据驱动先验与特定于实例的切片到体积配准的集成,以实现运动中快速且适应性强的运动校正模拟婴儿运动的场景,并评估和验证所创建的方法,该方法针对有或没有类似婴儿运动的成人大脑功能磁共振成像扫描数据。这将有助于创建一种新颖的方法,通过与分辨率无关的体积重建来实现高精度、内存效率高和鲁棒的功能磁共振成像运动校正。鉴于该项目取得了良好的成果,未来的研究将扩展到婴儿功能磁共振成像。该项目将通过推进基础研究和应用研究的最先进水平,为机器学习、医学成像和计算机视觉方面的知识做出贡献。多学科领域。该项目还将使临床医生和医学图像处理研究人员受益,特别是功能磁共振成像和婴儿方面,为他们提供快速可靠的运动校正工具,解决当前技术的缺点。患者、医疗行业和社会也将受益于医学影像技术的发展,从而改善医疗体系和经济。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chen Qin其他文献

VAE-IF: Deep feature extraction with averaging for unsupervised artifact detection in routine acquired ICU time-series
VAE-IF:在常规采集的 ICU 时间序列中进行深度特征提取和平均无监督伪影检测
  • DOI:
    10.48550/arxiv.2312.05959
  • 发表时间:
    2023-12-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hollan Haule;Ian Piper;Patricia Jones;Chen Qin;T. M. Lo;Javier Escudero
  • 通讯作者:
    Javier Escudero
Ore-controlling features of Qianlishan-Dayishan-Jiuyishan triangle mineralization region,Hunan Province
湖南千里山-大伊山-九嶷山三角矿化区控矿特征
Doctor-bladed Cu2ZnSnS4 light absorption layer for low-cost solar cell application
用于低成本太阳能电池应用的刮刀式 Cu2ZnSnS4 光吸收层
  • DOI:
    10.1088/1674-1056/21/3/038401
  • 发表时间:
    2012-03-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chen Qin;Li Zhen;Ni Yi;Cheng Shu;Dou Xiao
  • 通讯作者:
    Dou Xiao
Facile synthesis of magnetic iron oxide nanoparticles using 1-methyl-2-pyrrolidone as a functional solvent
使用 1-甲基-2-吡咯烷酮作为功能溶剂轻松合成磁性氧化铁纳米粒子
Electrochemical behavior of tryptophan and its derivatives at a glassy carbon electrode modified with hemin
色氨酸及其衍生物在氯化血红素修饰玻碳电极上的电化学行为
  • DOI:
    10.1016/s0003-2670(01)01470-2
  • 发表时间:
    2002-02-11
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    C. Nan;Zhao Feng;Wang Xiu Li;D. Ping;Chen Qin
  • 通讯作者:
    Chen Qin

Chen Qin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chen Qin', 18)}}的其他基金

TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.75万
  • 项目类别:
    Research Grant

相似国自然基金

电针唤醒并重建大鼠大脑“感觉运动网络”促进脑损伤后肢体运动功能康复的机制研究
  • 批准号:
    82305421
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于STAT1介导的HMGB1炎症通路探讨运动改善COPD膈肌功能障碍的作用机制
  • 批准号:
    82372573
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于T形扫描热探针技术的微观运动界面非平衡能量传递过程研究
  • 批准号:
    52376159
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
大别-苏鲁造山带印支期错移运动学机制:来自大别-郯庐构造衔接变形的证据
  • 批准号:
    42302248
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
运动促进脂肪细胞释放富含miR-17-3p的外泌体及靶向调控CAMKII介导心脏保护的作用机制研究
  • 批准号:
    82302875
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Rapid Motion-Robust and Easy-to-Use Dynamic Contrast-Enhanced MRI for Liver Perfusion Quantification
用于肝脏灌注定量的快速运动稳健且易于使用的动态对比增强 MRI
  • 批准号:
    10831643
  • 财政年份:
    2023
  • 资助金额:
    $ 20.75万
  • 项目类别:
CAREER: Exploring Robust Robot Manipulation through Compliance- and Motion-based Manipulation Funnels
职业:通过基于顺应性和运动的操纵漏斗探索鲁棒的机器人操纵
  • 批准号:
    2240040
  • 财政年份:
    2023
  • 资助金额:
    $ 20.75万
  • 项目类别:
    Standard Grant
Fast and Robust Deep Learning for Medical imaging: Segmentation and Registration methods invariant to contrast and resolution
快速、鲁棒的医学成像深度学习:对比度和分辨率不变的分割和配准方法
  • 批准号:
    10733935
  • 财政年份:
    2023
  • 资助金额:
    $ 20.75万
  • 项目类别:
Robust, Contrast-Free Functional Renal MRI
稳健、无对比的功能性肾脏 MRI
  • 批准号:
    10578551
  • 财政年份:
    2023
  • 资助金额:
    $ 20.75万
  • 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
  • 批准号:
    10746348
  • 财政年份:
    2023
  • 资助金额:
    $ 20.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了