SHF:Small: Learning-based Fast Analysis and Fixing for Electromigration Damage
SHF:Small:基于学习的电迁移损伤快速分析和修复
基本信息
- 批准号:2305437
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electromigration (EM) has a significant reliability issue and limiting factor for advanced very large scale integration (VLSI) designs due to the shrinking size and increasing current density of copper-based interconnects in sub-3nm technology. As a result, future chips are expected to age faster than previous generations. While recent advances in EM modeling and assessment techniques have been made, fast and accurate EM analysis and automatic optimization for large-scale power grid networks remain challenging due to the need for physics-based modeling that involves solving partial differential equations for hydrostatic stress in large interconnects. This becomes even more difficult for full-chip level EM management. Machine learning techniques, particularly deep learning based on deep neural networks (DNNs), such as convolutional neural networks (CNNs), and scientific machine learning (SciML) approaches, have emerged as promising solutions to traditional numerical analysis techniques for solving partial differential equations (PDEs). The unsupervised physics-informed/constrained neural network (PINN/PCNN) framework in the SciML field shows powerful capabilities such as mesh-free and parametrized numerical solutions. However, existing PINN/PCNN works can only solve small PDE problems with simple boundary conditions. For large engineering problems with millions of variables commonly seen in design automation, PINN/PCNN approaches show slow convergence, if they converge at all. Additionally, fixing EM-induced failure or damage to achieve the expected EM mean time to failure at both design and run times remains challenging due to the sensitivity-based optimization framework and lack of sufficient on-chip temperature sensors. The tools to be developed in this project will be valuable to advancing the understanding of this important problem and curtailing the lifetime reliability issue of complementary metal-oxide semiconductor (CMOS) chips.This project will develop novel learning-based EM analysis based on PINN/PCNN framework and efficient machine learning-accelerated full-chip EM fixing and run-time management methods for VLSI chips in the nanometer regime. First, the project will explore new SciML-based solutions such as enhanced PINN/PCNN methods, for hydrostatic stress analysis for multi-segment interconnect trees. On top of those methods, full-chip multi-physics coupled EM induced IR drop (i.e., reduction in voltage) analysis and lifetime estimation for power grid networks considering Joule heating effects will be developed. Second, the project will develop efficient full-chip EM-aware power grid optimization techniques, aided by DNNs, along with a dynamic run-time EM-aware management method to identify the real hotspots of processors. The project will investigate DNN-accelerated full-chip power grid optimization by exploiting the differentiability of the trained DNN models to allow for rapid sensitivity calculations based on a sequence of linear programming techniques. Finally, we will devise a DNN-based method to estimate hotspots and develop a dynamic run-time EM lifetime management method, considering the actual hotspots of processors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电气移民(EM)由于尺寸缩小和低3NM技术中铜互连的电流密度增加而具有高级非常大规模集成(VLSI)设计的重大可靠性问题和限制因素。结果,预计未来的芯片年龄要比前几代快。尽管已经取得了最新的EM建模和评估技术的进步,但由于需要基于物理学的建模,涉及在大型互连中求解偏微分方程的部分差分方程,因此快速准确的EM分析和对大规模电网网络的自动优化仍然具有挑战性。对于全芯片级别的EM管理,这将变得更加困难。机器学习技术,尤其是基于深层神经网络(DNN)的深度学习,例如卷积神经网络(CNN)和科学机器学习(SCIML)方法,已成为用于解决部分微分方程(PDES)的传统数值分析技术的有希望的解决方案。 SCIML字段中的无监督物理信息/约束神经网络(PINN/PCNN)框架显示出强大的功能,例如无网格和参数化的数值解决方案。但是,现有的PINN/PCNN作品只能在简单的边界条件下解决小的PDE问题。对于在设计自动化中常见的数百万变量的大型工程问题,PINN/PCNN方法如果完全收敛,则会显示出缓慢的收敛性。此外,由于基于灵敏度的优化框架和缺乏足够的芯片片上温度传感器,固定EM诱导的故障或损坏以实现预期的EM平均时间在设计和运行时间上的平均时间仍然具有挑战性。该项目中要开发的工具对于促进对这一重要问题的理解并缩小了互补金属氧化物半导体(CMOS)芯片的终身可靠性问题非常有价值。本项目将基于PINN/PCNN框架和有效的机器学习 - 固定和运行时间管理方法来开发基于新学习的EM分析。首先,该项目将探索基于SCIML的新解决方案,例如增强的PINN/PCNN方法,用于用于多段互连树的静水压力分析。除这些方法外,考虑使用焦耳加热效应的电网网络的全芯片多物理耦合EM诱导的IR下降(即电压降低)分析和寿命估计。其次,该项目将开发有效的全芯片EM-感知功率电网优化技术,并在DNNS的帮助下,以及动态的运行时EM-Aware Aranage Management方法,以识别处理器的真实热点。该项目将通过利用训练有素的DNN模型的可不同性来研究DNN加速的全芯片功率电网优化,以允许基于线性编程技术的序列进行快速敏感性计算。最后,我们将设计一种基于DNN的方法来估计热点并开发动态的运行时EM终生管理方法,考虑到处理器的实际热点。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响标准通过评估来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheldon Tan其他文献
Sheldon Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheldon Tan', 18)}}的其他基金
SHF:Small: Data-Driven Thermal Monitoring and Run-Time Management for Manycore Processor and Chiplet Designs
SHF:Small:适用于多核处理器和小芯片设计的数据驱动热监控和运行时管理
- 批准号:
2113928 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: Machine Learning Approach for Fast Electromigration Analysis and Full-Chip Assessment
SHF:Small:用于快速电迁移分析和全芯片评估的机器学习方法
- 批准号:
2007135 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IRES Track I: Development of Global Scientists and Engineers by Collaborative Research on Reliability-Aware IC Design
IRES Track I:通过可靠性意识 IC 设计合作研究促进全球科学家和工程师的发展
- 批准号:
1854276 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: EM-Aware Physical Design and Run-Time Optimization for sub-10nm 2D and 3D Integrated Circuits
SHF:Small:10nm 以下 2D 和 3D 集成电路的电磁感知物理设计和运行时优化
- 批准号:
1816361 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Physics-Based Electromigration Assessment and Validation For Reliability-Aware Design and Management
SHF:小型:基于物理的电迁移评估和验证,用于可靠性设计和管理
- 批准号:
1527324 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Thermal-Sensitive System-Level Reliability Analysis and Management for Multi-Core and 3D Microprocessors
多核和 3D 微处理器的热敏系统级可靠性分析和管理
- 批准号:
1255899 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
US-Singapore Planning Visit: Collaborative Research on Design and Verification of 60Ghz RF/MM Integrated Circuits
美国-新加坡计划访问:60Ghz RF/MM 集成电路设计与验证合作研究
- 批准号:
1051797 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IRES: Development of Global Scientists and Engineers by Collaborative Research on Variation-Aware Nanometer IC Design
IRES:通过变异感知纳米 IC 设计的合作研究来促进全球科学家和工程师的发展
- 批准号:
1130402 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Variational and Bound Performance Analysis of Nanometer Mixed-Signal/Analog Circuits
SHF:小型:纳米混合信号/模拟电路的变分和束缚性能分析
- 批准号:
1116882 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small:GPU-Based Many-Core Parallel Simulation of Interconnect and High-Frequency Circuits
SHF:Small:基于 GPU 的互连和高频电路多核并行仿真
- 批准号:
1017090 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
基于深度学习的小样本侧扫声纳小目标探测
- 批准号:42374050
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
基于图表示深度学习的全新小分子先导化合物筛选方法研究
- 批准号:62372375
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
不平衡数据下基于多源域迁移学习的小微企业信用风险评估研究
- 批准号:72301093
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多时序多模态分子影像Delta深度融合学习预测非小细胞肺癌免疫治疗疗效的研究
- 批准号:82371994
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于无监督深度学习的复材小尺寸缺陷热成像表征方法研究
- 批准号:62301507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant