EAGER: Advanced Digital Twin Capability for Turbulent Wind Fields in the NHERI Boundary Layer Wind Tunnel at the University of Florida

EAGER:佛罗里达大学 NHERI 边界层风洞中湍流风场的先进数字孪生能力

基本信息

  • 批准号:
    2302650
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) will establish, validate, and disseminate an advanced digital twin capability for the National Science Foundation (NSF)-supported Natural Hazards Engineering Research Infrastructure (NHERI) boundary layer wind tunnel (BLWT) at the University of Florida (UF). Wind tunnel testing remains the most common approach for assessing wind loads on structures and informing wind resistant design to reduce the cost of damage. However, wind tunnel experiments have limitations, such as the measurement resolution and the challenge of obtaining simultaneous records of wind velocity and pressure fields. Numerical simulations, such as Large Eddy Simulation (LES), offer an opportunity to fill in these gaps, but such simulation capabilities are currently not optimally leveraged by the research community. An important barrier is that current numerical modeling capabilities are mostly tailored to stationary, standard neutral wind profiles; in contrast, wind tunnels such as the BLWT at UF are increasingly implementing advanced capabilities to reproduce more complex turbulent wind fields that cause structural damage. This research project will establish numerical simulation capabilities for these complex wind fields. To maximize the potential impact of the project, validation test cases and a corresponding digital twin tool set and tutorial for the simulation capabilities will be defined through structured interviews with the current UF BLWT user base. The resulting digital twin capability will make it possible to jointly leverage numerical and experimental models to improve understanding of the turbulent wind loads that drive damage to buildings and civil infrastructure and to advance wind resilient design. Simulation data and documented source codes will be archived and made publicly available in the NHERI Data Depot (https://www.DesignSafe-ci.org). This EAGER will contribute to the NSF role in the National Windstorm Impact Reduction Program. The specific goal of the research is to establish and disseminate a numerical modeling strategy for reproducing complex turbulent wind fields generated in the UF BLWT. For standard neutral log-law wind fields, inflow boundary conditions commonly employ artificial turbulence generation methods. Since the velocity statistics of artificial turbulence evolve within the computational domain, some form of calibration is required to ensure that the target wind field is correctly reproduced. This calibration challenge is exacerbated when the objective is to model more complex turbulent wind fields, such as the boundary layer with a pronounced roughness sublayer that can be produced in the UF BLWT, which is important for low-rise buildings, where the building is immersed in the roughness sublayer (the roughness height of the boundary layer is on the order of the building height). The first objective of this project is to explore computationally efficient and accurate methods for numerically reproducing these roughness sublayers. Different combinations of artificial turbulence inflow generators, upstream roughness resolving simulations, source term forcing methods, and machine learning approaches will be investigated and validated against experimental data. The second objective of this project is to support broad dissemination of the resulting turbulence generation method by co-designing a digital twin tool set and a tutorial with the BLWT user base. The digital wind tunnel can also help identify optimal measurement locations for physical testing and potentially support data infilling where there are limits on the spatial resolution of physical measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项早期概念探索性研究资助 (EAGER) 将为美国国家科学基金会 (NSF) 支持的自然灾害工程研究基础设施 (NHERI) 边界层风洞 (BLWT) 建立、验证和传播先进的数字孪生功能。佛罗里达大学(UF)。风洞测试仍然是评估结构风荷载和通知抗风设计以减少损坏成本的最常见方法。然而,风洞实验存在局限性,例如测量分辨率以及获得风速和压力场同时记录的挑战。大涡模拟 (LES) 等数值模拟提供了填补这些空白的机会,但研究界目前尚未充分利用此类模拟功能。一个重要的障碍是,当前的数值模拟能力大多是针对固定的、标准的中性风廓线而定制的;相比之下,UF 的 BLWT 等风洞越来越多地采用先进功能来重现更复杂的湍流风场,从而导致结构损坏。该研究项目将为这些复杂的风场建立数值模拟能力。为了最大限度地发挥该项目的潜在影响,将通过与当前 UF BLWT 用户群的结构化访谈来定义验证测试用例以及相应的数字孪生工具集和仿真功能教程。由此产生的数字孪生功能将能够联合利用数值和实验模型,以提高对导致建筑物和民用基础设施损坏的湍流风荷载的理解,并推进抗风设计。仿真数据和记录的源代码将在 NHERI 数据仓库 (https://www.DesignSafe-ci.org) 中存档并公开提供。该 EAGER 将有助于 NSF 在国家风暴影响减少计划中发挥作用。该研究的具体目标是建立并传播一种数值模拟策略,用于再现 UF BLWT 中产生的复杂湍流风场。对于标准中性对数律风场,流入边界条件通常采用人工湍流生成方法。由于人工湍流的速度统计在计算域内演变,因此需要某种形式的校准以确保正确再现目标风场。当目标是模拟更复杂的湍流风场(例如可在 UF BLWT 中生成的具有明显粗糙度子层的边界层,这对于建筑物浸入水中的低层建筑非常重要)时,这种校准挑战会加剧。在粗糙度子层中(边界层的粗糙度高度约为建筑物高度)。该项目的第一个目标是探索计算高效且准确的方法来数字再现这些粗糙度子层。将根据实验数据研究和验证人工湍流流入发生器、上游粗糙度解析模拟、源项强迫方法和机器学习方法的不同组合。该项目的第二个目标是通过与 BLWT 用户群共同设计数字孪生工具集和教程,支持由此产生的湍流生成方法的广泛传播。数字风洞还可以帮助确定物理测试的最佳测量位置,并有可能支持物理测量空间分辨率有限的数据填充。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力评估进行评估,认为值得支持。优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Catherine Gorle其他文献

Catherine Gorle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Catherine Gorle', 18)}}的其他基金

CAREER: Quantifying Wind Hazards on Buildings in Urban Environments
职业:量化城市环境中建筑物的风害
  • 批准号:
    1749610
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Quantifying Uncertainties in Computational Fluid Dynamics Predictions for Wind Loads on Buildings
量化建筑物风荷载计算流体动力学预测的不确定性
  • 批准号:
    1635137
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

不确定单机批调度及其结合先进过程控制(APC)在半导体制造中的应用
  • 批准号:
    72301177
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于先进深度学习模型的面向临床多模态乳腺癌诊断方法研究
  • 批准号:
    62371312
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
先进航空发动机中超临界态煤油燃烧过程中的基础科学问题研究
  • 批准号:
    52336006
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目
基于物理模型融合深度学习的先进合金极限条件应力应变行为预测
  • 批准号:
    52311530082
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
关联锂离子电池正极动力学-热力学与构效-失效机制的先进同步辐射研究
  • 批准号:
    12375328
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Maximising tidal energy generation through Blade Scaling & Advanced Digital Engineering - MAXBlades
通过叶片缩放最大限度地提高潮汐能发电量
  • 批准号:
    10064409
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    EU-Funded
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
  • 批准号:
    10629554
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Immunogenomic predictors of outcomes in patients with locally advanced cervical cancer treated with immunotherapy and chemoradiation
接受免疫治疗和放化疗的局部晚期宫颈癌患者结果的免疫基因组预测因子
  • 批准号:
    10908093
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
  • 批准号:
    10716621
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了