Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators

工程磁拓扑绝缘体的电子/磁结构的定制和探测

基本信息

  • 批准号:
    2219610
  • 负责人:
  • 金额:
    $ 47.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical Abstract: Remarkable properties of topological materials, such as ability to conduct electric current without dissipation, were first discovered four decades ago, but only under extreme experimental conditions of nearly absolute zero temperature and high magnetic field. It was subsequently recognized that such a remarkable transport property is derived from material “topology”. This recognition has launched the era of topological quantum materials with the potential to realize the remarkable properties at a much higher temperature without an external magnetic field. There are, however, several technical challenges that need to be overcome before bringing such technical promises to reality. This research program is set up to address some of the most important materials science issues and to lay the foundations for tailoring the new class of magnetic topological insulators using multi-layered heterostructures. Educationally, the PI will create a new course beyond the current curriculum to provide students with academic training so they can be well-prepared to enter this new exciting research field of topological quantum materials. Technical Abstract: In magnetic topological insulators (MTI), the incorporation of magnetism breaks the time reversal symmetry and creates a Dirac mass gap in the otherwise massless surface states of topological insulators (TI). In MTI remarkable transport properties such as quantum anomalous Hall effect (QAHE) have been predicted and observed in extrinsic MTI materials (i.e. TI with magnetic dopants). However, due to the dopant disorder effect, the QAHE can be observed only at a very low temperature (~ 30 mK). The newly emerged intrinsic MTI materials such as MnBi2Te4 (MBT) offers an alternative platform by incorporating a stoichiometric magnetic layer (MnTe) into the center of Bi2Te3. An ideal intrinsic MTI would be free of dopant disorder, thus offering the possibility to observe QAHE up to the magnetic transition temperature. Already several groups have reported observation of QAHE at ~ 1K, significantly higher than that in extrinsic MTI, albeit still smaller than the magnetic transition temperature (~ 20K). These earlier works have stimulated intensive worldwide research work. However, several outstanding issues remain unresolved. Meanwhile, efforts have been devoted to designing new magnetic topological quantum materials beyond simple MBT and related compounds. This project combines molecular beam epitaxy with in-situ scanning probe microscopy to study artificially engineered MTI and MTI/TI heterostructures. The object is three-fold: (a) controlling the formation of MTI and MTI/TI heterostructure layer-by-layer with ultimate control in defect density and chemical potential; (b) resolving key outstanding issues that challenge the current understanding of the connection between the topological surface states and the magnetic textures; (c) determining key designing parameters for artificial engineering of topological properties using MTI/TI superlattices. Educationally, the graduate students trained in this research program gain a broad scientific perspective. Through the design of a special course in topological quantum materials, the PI will significantly broaden graduate/undergraduate education in contemporary condensed matter physic. The program also broadens the participation of underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:拓扑材料的显着特性,例如在不耗散的情况下传导电流的能力,在四十年前首次被发现,但只有在几乎绝对零温度和高磁场的极端实验条件下才被发现。卓越的传输特性源自材料“拓扑”,这种认识开启了拓扑量子材料的时代,该材料有可能在没有外部磁场的情况下在更高的温度下实现卓越的特性。在带来这样的问题之前需要克服该研究计划旨在解决一些最重要的材料科学问题,并为使用多层异质结构定制新型磁性拓扑绝缘体奠定基础。在教育方面,PI 将创建一门新课程。超越当前课程,为学生提供学术培训,使他们能够为进入拓扑量子材料这一令人兴奋的新研究领域做好充分准备。 技术摘要:在磁性拓扑绝缘体(MTI)中,磁性的结合打破了时间。反转对称性并在拓扑绝缘体 (TI) 的无质量表面态中产生狄拉克质量隙。在 MTI 中,在外在 MTI 材料(即具有磁性掺杂剂的 TI)中预测并观察到了显着的输运特性,例如量子反常霍尔效应 (QAHE)。然而,由于掺杂剂无序效应,QAHE只能在非常低的温度(~30 mK)下观察到。新出现的本征MTI材料如MnBi2Te4 (MBT) 通过将化学计量磁性层 (MnTe) 合并到 Bi2Te3 的中心来提供替代平台,理想的本征 MTI 不会出现掺杂紊乱,从而提供了在高达几个磁转变温度下观察 QAHE 的可能性。研究小组报告了在〜1K下观察到的QAHE,显着高于外在MTI,但仍然小于磁转变温度(〜20K)。然而,一些悬而未决的问题仍然没有得到解决,同时,该项目致力于将分子束外延与原位扫描探针显微镜相结合来设计新的磁性拓扑量子材料。工程化MTI和MTI/TI异质结构的目标有三个:(a)逐层控制MTI和MTI/TI异质结构的形成,最终控制缺陷密度和化学势;解决挑战当前对拓扑表面态与磁性纹理之间联系的理解的关键突出问题;(c) 使用 MTI/TI 超晶格确定拓扑特性人工工程的关键设计参数。通过设计拓扑量子材料的特殊课程,该项目将显着拓宽当代凝聚态物理学的研究生/本科生教育。该项目还扩大了代表性不足的群体的参与。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualizing the interplay of Dirac mass gap and magnetism at nanoscale in intrinsic magnetic topological insulators
可视化本征磁性拓扑绝缘体中纳米级狄拉克质量间隙和磁性的相互作用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chih-Kang Shih其他文献

Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System
全参数空间中二维等离子体激子耦合的调谐:极化非厄米系统
  • DOI:
    10.1021/acs.nanolett.1c00198
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yungang Sang;Chun-Yuan Wang;Soniya S. Raja;Chang-Wei Cheng;Chiao-Tzu Huang;Chun-An Chen;Xin-Quan Zhang;Hyeyoung Ahn;Chih-Kang Shih;Yi-Hsien Lee;Jinwei Shi;Shangjr Gwo
  • 通讯作者:
    Shangjr Gwo
PTCDA Molecular Monolayer on Pb Thin Films: An Unusual π -Electron Kondo System and Its Interplay with a Quantum-Confined Superconductor
Pb 薄膜上的 PTCDA 分子单层:一种不寻常的近藤电子系统及其与量子限制超导体的相互作用
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuangzan Lu;Hyoungdo Nam;Penghao Xiao;Mengke Liu;Yanping Guo;Yusong Bai;Zhengbo Cheng;Jinghao Deng;Yanxing Li;Haitao Zhou;Graeme Henkelman;Gregory A. Fiete;Hong-Jun Gao;Allan H. MacDonald;Chendong Zhang;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih
Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
单层 1T-NbSe2 作为二维相关磁绝缘体
  • DOI:
    doi:10.1126/sciadv.abi6339
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih
Phonon Renormalization in Reconstructed MoS2 Moire Superlattices
重建 MoS2 莫尔超晶格中的声子重整化
  • DOI:
    10.1038/s41563-021-00960-1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    41.2
  • 作者:
    Jiamin Quan;Lukas Linhart;Miao-Ling Lin;Daehun Lee;Jihang Zhu;Chun-YuanWang;Wei-Ting Hsu;Junho Choi;Jacob Embley;Carter Young;Takashi Taniguchi;Kenji Watanabe;Chih-Kang Shih;Keji Lai;Allan H. MacDonald;Ping-Heng Tan;Florian Libisch;Xiaoqin Li
  • 通讯作者:
    Xiaoqin Li
Giant up-conversion efficiency of InGaAs quantum dots in a planar microcavity
平面微腔中 InGaAs 量子点的巨大上转换效率
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    G. J. Salamo;Min Xiao;Xiaoyong Wang;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih

Chih-Kang Shih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chih-Kang Shih', 18)}}的其他基金

Tailoring electronic and photonic properties of van der Waals semiconductor heterostructures
定制范德华半导体异质结构的电子和光子特性
  • 批准号:
    1808751
  • 财政年份:
    2018
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
Manipulating 2D Superconductivity through atomic scale control of boundary conditions
通过边界条件的原子尺度控制来操纵二维超导
  • 批准号:
    1506678
  • 财政年份:
    2015
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
Advanced Accelerating Structures Based on Metamaterials
基于超材料的先进加速结构
  • 批准号:
    1415547
  • 财政年份:
    2014
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
FRG: Quantum Tuning of Superconducting, Plasmonic, and Chemical Properties of Metallic Nanostructures
FRG:金属纳米结构的超导、等离子体和化学性质的量子调谐
  • 批准号:
    0906025
  • 财政年份:
    2009
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
IGERT: Atomic and Molecular Imaging of Interfaces/Defects in Electronic, Spintronic, and Organic/Inorganic Materials
IGERT:电子、自旋电子和有机/无机材料中界面/缺陷的原子和分子成像
  • 批准号:
    0549417
  • 财政年份:
    2006
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
FRG: Quantum Engineering of Metallic and Magnetic Nanostructures
FRG:金属和磁性纳米结构的量子工程
  • 批准号:
    0606485
  • 财政年份:
    2006
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
FRG-Quantum Engineering of Metallic and Magnetic Nanostructures
FRG-金属和磁性纳米结构的量子工程
  • 批准号:
    0306239
  • 财政年份:
    2003
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
NIRT: FRG: Collective and Quasiparticle Properties of Nanocrystals and Nano-Arrays
NIRT:FRG:纳米晶体和纳米阵列的集体和准粒子特性
  • 批准号:
    0210383
  • 财政年份:
    2002
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
FRG: Quantum Engineering of Metallic Nanostructures
FRG:金属纳米结构的量子工程
  • 批准号:
    0071893
  • 财政年份:
    2000
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
Cross-Sectional Scanning Probe Microscopy/Spectroscopy of Semiconductor Heterostructures
半导体异质结构的横截面扫描探针显微镜/光谱学
  • 批准号:
    9402938
  • 财政年份:
    1994
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于等离激元热电子捕获的TMDs位置灵敏探测器研究
  • 批准号:
    12304350
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于4f电子的二维稀土金属卤化物多铁性的实验探测及调控研究
  • 批准号:
    12304131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水/二氧化钛界面相互作用的角分辨光电子谱学探测
  • 批准号:
    22302188
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
结构表面等离激元与拓扑表面态电子相互作用的泵浦探测研究
  • 批准号:
    12374223
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于宽波段光谱探测的镍基超导电子结构及其界面效应研究
  • 批准号:
    12374378
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Probing the Electronic Structure and Chemical Bonding of Cryogenically-Cooled Boron and Metal-Boride Nanoclusters
探究低温冷却硼和金属硼化物纳米团簇的电子结构和化学键合
  • 批准号:
    2403841
  • 财政年份:
    2024
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Standard Grant
Proposal to resurrect femtosecond laser labs for probing electronic materials
复兴飞秒激光实验室以探测电子材料的提案
  • 批准号:
    RTI-2023-00018
  • 财政年份:
    2022
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Research Tools and Instruments
CAREER: Probing and Manipulating Electronic and Spin Degrees of Freedom in Paramagnetic Single Molecule Circuits
职业:探测和操纵顺磁单分子电路中的电子和自旋自由度
  • 批准号:
    2145276
  • 财政年份:
    2022
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Continuing Grant
Proposal to resurrect femtosecond laser labs for probing electronic materials
复兴飞秒激光实验室以探测电子材料的提案
  • 批准号:
    RTI-2023-00018
  • 财政年份:
    2022
  • 资助金额:
    $ 47.28万
  • 项目类别:
    Research Tools and Instruments
Probing Phenotype-Genotype Relations After Whole Genome Sequencing in Patients with Atrial Fibrillation
心房颤动患者全基因组测序后探索表型-基因型关系
  • 批准号:
    10686188
  • 财政年份:
    2021
  • 资助金额:
    $ 47.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了