ERI: Nanoscale and in-situ measurement of evaporating liquid thin film thickness

ERI:蒸发液体薄膜厚度的纳米级原位测量

基本信息

  • 批准号:
    2301973
  • 负责人:
  • 金额:
    $ 19.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Ultrafast evaporation phenomena have been recently reported, which can be applied to design high-efficient heat transfer devices such as evaporators, coolers, and condensers. High-efficient thermal energy systems can play a critical role in the climate crisis by reducing energy consumption. However, the fundamental mechanism for ultrafast evaporation beyond the theoretical limit is still being determined because of the limitation of measurement technology for the nanoscale liquid film dynamics during evaporation. The highly sensitive imaging technique based on nanophotonics and optical interference has been introduced to explore the concentration, temperature, and thickness, but not nanoscale liquid film thickness in evaporation. Therefore, the principle of this project is to provide a deep understanding of the underlying mechanism of ultrafast evaporation by measurement and analysis. The project will also include significant educational activities such as undergraduate/graduate research programs, course development, and outreach program for local high school students.The goal of this project is to study the evaporating liquid thin film in nanoscale and real-time to provide experimental evidence for the role of transition region in the recently reported ultrafast evaporation and understand its underlying physics. Ultrafast evaporation is reported on hydrophilic surfaces, but its working mechanism is not clear because of measurement difficulty with existing techniques. This project will achieve this goal by experiment and analysis: (i) Nanoscale thin film calibration with a sub-nanometer actuator on graphene/Au film metasurface, (ii) Nanoscale thin film dynamics under varying surface wettability and heat flux on flat and two-dimensional nanochannel, and (iii) Development of simultaneous technique of surface plasmon resonance imaging and reflection interference fringe for a broad range of film dynamics from sun-nanometers to hundreds of micron scales. Surface plasmon resonance imaging will be used to detect liquid film thickness variation in sub-nanometer resolution with the metasurface technique. The reflection interference fringe technique will also be verified to complement the result by surface plasmon resonance. Adiabatic and diffusive film theory will be compared with experiments and numerical simulation such as ray tracing and modeling. This project is expected to provide a breakthrough in near-surface phenomena, including evaporation, boiling, condensation, and surface wetting, through innovative optical characterization and its physical understanding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近已经报道了超快蒸发现象,可以应用于设计高效传热设备,例如蒸发器,冷却器和冷凝器。高效的热能系统可以通过减少能源消耗来在气候危机中发挥关键作用。但是,由于蒸发过程中纳米级液体膜动力学的测量技术限制了测量技术的限制,因此仍在确定超出理论极限之外的超快蒸发的基本机制。已经引入了基于纳米光子和光学干扰的高度敏感的成像技术,以探索蒸发中的浓度,温度和厚度,但不是纳米级液体膜厚度。因此,该项目的原理是通过测量和分析深入了解超快蒸发的潜在机制。该项目还将包括重要的教育活动,例如本科/研究生研究计划,课程开发和针对当地高中生的外展计划。该项目的目的是研究纳米级和实时蒸发的液体薄膜和实时的蒸发液薄膜,以提供实验性证据,以实验过渡地区在最近报道的超级快速蒸发和理解其基础物理学中的作用。在亲水性表面上报道了超快蒸发,但由于现有技术的测量困难,其工作机制尚不清楚。该项目将通过实验和分析来实现这一目标:(i)在石墨烯/au膜膜上的纳米级薄膜校准,(ii)在平坦和二维纳米渠道和(iii)表面杂货及其反射的纳米级薄膜动力学下,纳米级薄膜动力学在变化的表面润湿和热通量上,以及(iii)的发展。薄膜动力学从日光纳米到数百微米尺度。表面等离子体共振成像将用于通过元表技术在亚纳米分辨率中检测液膜厚度变化。反射干扰条纹技术还将得到验证,以补充表面等离子体共振的结果。绝热和扩散膜理论将与实验和数值模拟(例如射线追踪和建模)进行比较。预计该项目将通过创新的光学特征及其身体理解来提供近地面现象的突破,包括蒸发,沸腾,凝结和表面润湿。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响来通过评估来支持的,因此值得通过评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Iltai Kim其他文献

Iltai Kim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Zr-Sn-Nb合金中纳米级第二相的原位腐蚀氧化行为及氧化膜内微裂纹的形成机理的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Zr-Sn-Nb合金中纳米级第二相的原位腐蚀氧化行为及氧化膜内微裂纹的形成机理的研究
  • 批准号:
    52201081
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
金属/氧化物催化剂表界面结构及催化性质的原位纳米级分辨研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
聚乳酸-酰胺11嵌段共聚物协同纤维素纳米晶反应挤出制备具有纳米连续相液滴的PLA复合材料及其对PLA增强增韧的机理
  • 批准号:
    51803029
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于MOFs原位转化的纳米级Se@y-C多孔复合材料可控构筑及其高效储锂性能研究
  • 批准号:
    21805117
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
  • 批准号:
    10586599
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
in situ Epigenetic Profiling of Single Cells in Kidney
肾脏单细胞的原位表观遗传分析
  • 批准号:
    10645605
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
Optimization of High Frequency Irreversible Electroporation (H-FIRE) for tumor ablation and immune system activation in pancreatic cancer applications
高频不可逆电穿孔 (H-FIRE) 的优化,用于胰腺癌应用中的肿瘤消融和免疫系统激活
  • 批准号:
    10659581
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
Mechanical Modulation of Cell Migrations by DNA Nanoassemblies
DNA 纳米组件对细胞迁移的机械调节
  • 批准号:
    10659333
  • 财政年份:
    2023
  • 资助金额:
    $ 19.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了