ERI: Magnetic nanoparticles to fight biofilms
ERI:磁性纳米颗粒对抗生物膜
基本信息
- 批准号:2301790
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Bacteria often grow in dense, sticky colonies on surfaces, called biofilms. Biofilms can grow on diverse surfaces, such as medical implants, food containers or boat hulls. Unfortunately, biofilms can cause issues, and their removal can be difficult. For example, in the case of structures or parts of boats that are underwater, divers need to scrub the underwater surfaces. This research proposes using magnetic fields and magnetic nanoparticles to remove biofilms from a distance. Magnetic nanoparticles under the action of magnetic fields that alternate direction will rotate and move to follow the magnetic field, generating mechanical forces and temperature increases. These two effects will be explored by using different magnetic nanoparticles and applied magnetic field combinations to remove biofilms of a model marine biofilm, and the approach will be tested in natural marine biofilms. This project has the potential to yield innovative biofilm-removal technologies for other sectors, including the food industry and healthcare, impacting societal wellbeing and the US economy. Additionally, the research will involve undergraduate minority students, fostering their scientific interests and opening doors for future scientific careers. Researchers will also create easy-to-understand demonstration kits for public distribution featuring magnetic nanoparticles interacting with magnetic fields.Bacterial biofilms have a wide range of negative impacts on the economy, society, and human health, such as food spoilage, damage to military vehicles, and infections associated with medical implants. Marine bacterial biofilms grow on various underwater surfaces, like boat hulls and bridge foundations, and can be detrimental for their performance. While physical methods are often needed to remove biofilms, these are not always possible or practical, especially in cases where expensive and risky diving operations are required to access underwater structures. This project will investigate the use of magnetic nanoparticles under alternating magnetic fields to remove marine biofilms. Laboratory grown C. marina biofilms will be used as a model. Different magnetic nanoparticle sizes, shapes and surface coatings will be tested against distinct alternating magnetic field regimes. The biofilm integrity will be evaluated by quantifying the microrheology of the biofilm before and after treatment using dynamic magnetic susceptibility methods, and by analyzing the spatial distribution of bacteria and extracellular polymeric substances using fluorescence imaging. Once an optimal regime for magnetic nanoparticle application and treatment has been established, this approach will be tested with natural marine biofilms. The project will include undergraduate students underrepresented in STEM fields, increasing their involvement in scientific research. Additionally, a demo kit will be created to showcase the potential applications of magnetic nanoparticles in biomedicine. The kit will be used in open public events to increase science literacy among the general population and to raise awareness of scientific progress. This kit will also be used in recruitment events among diverse populations, encouraging diversity and inclusion, generating excitement towards the pursuit of STEM careers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细菌通常在表面上的致密粘性菌落中生长,称为生物膜。生物膜可以在各种表面上生长,例如医疗植入物,食品容器或船体。不幸的是,生物膜可能会引起问题,并且清除可能很困难。例如,对于水下的结构或部分船,潜水员需要擦洗水下表面。这项研究建议使用磁场和磁性纳米颗粒从远处去除生物膜。磁性纳米颗粒在磁场的作用下,交替的方向将旋转并移动以跟随磁场,从而产生机械力和温度增加。这两种效果将通过使用不同的磁性纳米颗粒和施加的磁场组合来探索,以去除模型海洋生物膜的生物膜,并将在天然海洋生物膜中测试该方法。该项目有可能为其他领域(包括食品行业和医疗保健,影响社会健康和美国经济)产生创新的生物膜驱动技术。此外,这项研究将涉及少数族裔学生,促进他们的科学兴趣并为未来的科学职业开辟大门。研究人员还将创建易于理解的示范套件,用于与磁场相互作用的磁性纳米颗粒的公共分销套件。细菌生物膜对经济,社会和人类健康产生了广泛的负面影响,例如食品破坏,对军用车辆的破坏,对军用车辆的损害以及与医疗植入物相关的感染。海洋细菌生物膜生长在各种水下表面,例如船体和桥梁地基,可能对它们的性能有害。尽管通常需要采用物理方法来去除生物膜,但这些方法并不总是可能或实用的,尤其是在昂贵且风险的潜水操作以获取水下结构时。该项目将研究在交替的磁场下使用磁性纳米颗粒以去除海洋生物膜。实验室种植的码头生物膜将用作模型。不同的磁性纳米颗粒尺寸,形状和表面涂层将针对不同的交替磁场机制进行测试。将通过使用动态磁敏感方法在处理前后量化生物膜的微流变学以及使用荧光成像分析细菌和细胞外聚合物物质的空间分布来评估生物膜完整性。一旦建立了用于磁性纳米颗粒的最佳状态和处理,将使用天然海洋生物膜测试这种方法。该项目将包括本科生在STEM领域的人数不足,从而增加了他们参与科学研究。此外,将创建一个演示套件来展示生物医学中磁性纳米颗粒的潜在应用。该套件将在公开的公共事件中使用,以提高普通人群中的科学素养,并提高对科学进步的认识。该套件还将用于不同人群之间的招聘活动,鼓励多样性和包容性,引起人们对STEM职业的兴奋。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子来评估的支持,并具有更大的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Andreu Blanco其他文献
Irene Andreu Blanco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新型控糖缓释bFGF磁纳米颗粒的构建及其通过TLR4调控铁调素/铁输出蛋白(Hepcidin/Ferroportin)轴介导巨噬细胞极化对糖尿病创面修复的研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
新型控糖缓释bFGF磁纳米颗粒的构建及其通过TLR4调控铁调素/铁输出蛋白(Hepcidin/Ferroportin)轴介导巨噬细胞极化对糖尿病创面修复的研究
- 批准号:82172226
- 批准年份:2021
- 资助金额:55.00 万元
- 项目类别:面上项目
开关响应型磁驱动纳米颗粒在稠油开采中的应用与界面机理研究
- 批准号:52174255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于介质纳米颗粒磁偶极共振的发光调控及方向选择增强
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
硬磁/反铁磁/软磁核壳结构纳米颗粒的可控制备、交换耦合机制和磁性能研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
骨格筋を模倣したバイオアクチュエータを利用したマイクロロボット
使用模仿骨骼肌的生物执行器的微型机器人
- 批准号:
22KJ0967 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Noninvasive visualization in tumor tissue using magnetization response of magnetic nanoparticles for cancer theranostics
使用磁性纳米粒子的磁化响应进行肿瘤组织的无创可视化用于癌症治疗诊断
- 批准号:
23H01419 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nanoparticle-mediated placental imaging and magnetic hyperthermia for management of ectopic pregnancy
纳米颗粒介导的胎盘成像和磁热疗治疗异位妊娠
- 批准号:
10639419 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Transformative Iron Metal Nanoparticles with Controlled Oxidation for Magnetic Particle Imaging.
用于磁粒子成像的具有受控氧化的变革性铁金属纳米粒子。
- 批准号:
10730728 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别: