CCSS: AI-Assisted Reconfigurable Dual-Input Load-Modulation Transmitter Array for Energy- and Spectrum-Efficient Massive MIMO Communications

CCSS:人工智能辅助可重构双输入负载调制发射机阵列,用于节能和频谱高效的大规模 MIMO 通信

基本信息

项目摘要

The scarcity of spectrum, especially in the sub-6-GHz frequency range, has motivated the spectrally efficient massive multi-input multi-output (mMIMO) communications. However, the use of large and dense antenna array with multiple high-power radio frequency (RF) transmitters creates technical challenges of antenna-amplifier impedance mismatch, efficiency degradation, and sharp temperature rise. The overarching goal of this project is to shift the paradigm of transmitter operation from ‘static and model-driven’ to ‘dynamic, intelligent and data-driven’ to significantly enhance the energy and spectrum efficiencies of next-generation wireless systems. The AI-based reconfiguration framework for RF transmitter array can be applied to many other reconfigurable RF circuits and subsystems, e.g., mMIMO receivers with dynamic spatial filtering, tunable filters, antenna tuners, and RF signal processors, making truly intelligent radios feasible. Beyond wireless communications, outcomes of this research may also impact on a variety of other antenna array systems, such as active phased array radars, wireless imaging and sensing, and wireless power transfer. Moreover, the proposed learning-based method for solving such a highly dynamic and non-stationary problem can be generalized to other complex real-time systems including robotic control, intelligent transportation systems, and next-generation wireless networks. The impact of this project will be further expanded through the following integrated educational efforts: a) attracting and retaining underrepresented students through appropriate programs; b) engaging undergraduate students through appropriate programs; c) integration of research findings in graduate and undergraduate courses at University of Central Florida; d) outreach to local community. The RF power amplifier (PA) has conventionally been designed and deployed under the assumption of static/quasi-static load impedance and ambient temperature. Nevertheless, these assumptions are invalid for the multi-antenna mMIMO systems due to strong antenna and thermal couplings, leading to degraded spectral and energy efficiencies at system level. To address this fundamental challenge, this project aims to transform the cutting-edge AI/machine-learning (ML) technologies into the hardware-centric RF transmitter design. Specifically, a novel dual-input hybrid load modulated balanced amplifier (DI-HLMBA) is proposed, offering unparalleled efficiency, bandwidth, and linearity. More importantly, the highly reconfigurable nature of DI-HLMBA in both digital and analog domains enables dynamic closed-loop control to counteract antenna mismatch and temperature upsurge during mMIMO operation, which can be generalized as a reinforcement-learning (RL) process. Additionally, the problem of dynamically optimizing DI-HLMBA will be formulated with a RL framework based on nonstationary Markov Decision Processes and a meta-stability-based hardware implementation strategy with reconfigurable field programmable gate array (FPGA) technology, tightly coupled to achieve real-time low-latency optimization. Furthermore, the AI-assisted operation as well as multi-band multi-standard capability will be extended from the individual PA/transmitter to the mMIMO array through a unique design method for the wideband fractal-shaped antenna array. Overall, this research establishes a cross-disciplinary design methodology based on a holistic integration of digital backend, RF frontend, antenna array, sensing, AI algorithm, FPGA acceleration, and inter-module interfaces to form an energy- and spectrum-efficient mMIMO system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
频谱稀缺,特别是在 6 GHz 以下频率范围内,推动了频谱高效的大规模多输入多输出 (mMIMO) 通信,然而,使用具有多个高功率射频的大型且密集的天线阵列。 (RF) 发射机带来了天线放大器阻抗不匹配、效率下降和温度急剧上升等技术挑战。该项目的总体目标是将发射机操作模式从“静态和模型驱动”转变为“动态、智能和动态”。 “数据驱动”可显着提高下一代无线系统的能量和频谱效率。基于人工智能的射频发射器阵列重构框架可应用于许多其他可重构射频电路和子系统,例如具有动态空间滤波功能的 mMIMO 接收器。可调谐滤波器、天线调谐器和射频信号处理器,使真正的智能无线电成为可能,除了无线通信之外,这项研究的成果还可能影响各种其他天线阵列系统,例如有源天线阵列系统。此外,所提出的用于解决这种高度动态和非平稳问题的基于学习的方法可以推广到其他复杂的实时系统,包括机器人控制、智能交通系统。和下一代无线网络的影响将通过以下综合教育工作进一步扩大:a) 通过适当的计划吸引和留住代表性不足的学生;b) 通过适当的计划吸引本科生;c) 整合研究成果;中央大学研究生和本科生课程佛罗里达州;d) 延伸到当地社区。 RF 功率放大器 (PA) 传统上是在静态/准静态负载阻抗和环境温度的假设下进行设计和部署的。然而,这些假设对于多天线 MMIMO 系统是无效的。由于强烈的天线和热耦合,导致系统级的频谱和能源效率下降。为了解决这一根本挑战,该项目旨在将尖端的人工智能/机器学习(ML)技术转变为以硬件为中心的射频。具体来说,提出了一种新型双输入混合负载调制平衡放大器(DI-HLMBA),它提供了无与伦比的效率、带宽和线性度,更重要的是,DI-HLMBA 在数字和模拟领域的高度可重新配置特性使得该放大器成为可能。动态闭环控制可以抵消 MMIMO 操作期间的天线失配和温度升高,这可以概括为强化学习 (RL) 过程。此外,动态优化 DI-HLMBA 的问题也将得到解决。采用基于非平稳马尔可夫决策过程的强化学习框架和基于元稳定性的硬件实现策略以及可重构现场可编程门阵列(FPGA)技术,紧密耦合以实现实时低延迟优化。通过宽带分形天线阵列的独特设计方法,辅助操作以及多频段多标准功能将从单独的 PA/发射机扩展到 mMIMO 阵列。基于数字后端、射频前端、天线阵列、传感、AI 算法、FPGA 加速和模块间接口整体集成的跨学科设计方法,形成节能和频谱高效的 MMIMO 系统。该奖项反映了 NSF 的法定要求使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconfigurable Hybrid Asymmetrical Load Modulated Balanced Amplifier with High Linearity, Wide Bandwidth, and Load Insensitivity
具有高线性度、宽带宽和负载不敏感性的可重构混合非对称负载调制平衡放大器
1-D Reconfigurable Pseudo-Doherty Load Modulated Balanced Amplifier With Intrinsic VSWR Resilience Across Wide Bandwidth
具有跨宽带宽固有 VSWR 弹性的一维可重构伪 Doherty 负载调制平衡放大器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenle Chen其他文献

Load Modulated Balanced Amplifier with Reconfigurable Phase Control for Extended Dynamic Range
具有可重新配置相位控制的负载调制平衡放大器,可扩展动态范围
Microwave Gas Breakdown in Tunable Evanescent-Mode Cavity Resonators
可调谐倏逝模腔谐振器中的微波气体击穿
Hybrid Load-Modulated Double-Balanced Amplifier (H-LMDBA) with Four-Way Load Modulation and >15-dB Power Back-off Range
具有四路负载调制和 >15dB 功率回退范围的混合负载调制双平衡放大器 (H-LMDBA)
Highly Linear and Highly Efficient Dual-Carrier Power Amplifier Based on Low-Loss RF Carrier Combiner
基于低损耗射频载波合路器的高线性、高效双载波功率放大器
Antibiased Electrostatic RF MEMS Varactors and Tunable Filters
抗偏静电 RF MEMS 变容二极管和可调谐滤波器

Kenle Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenle Chen', 18)}}的其他基金

ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Non-Reciprocally-Coupled Load-Modulation Platform for Next-Generation High-Power Magnetic-Less Fully-Directional Radio Front Ends
职业:用于下一代高功率无磁全向无线电前端的非互易耦合负载调制平台
  • 批准号:
    2239207
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CCSS: Intrinsically-Linear Loadline-Envelope-Tracking (LET) Radio Transmitter Toward Wideband, Energy-Efficient, and Ultra-Fast Wireless Communications
CCSS:本质线性负载线包络跟踪 (LET) 无线电发射机,实现宽带、节能和超快速无线通信
  • 批准号:
    1914875
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
  • 批准号:
    22303102
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
  • 批准号:
    62367003
  • 批准年份:
    2023
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
  • 批准号:
    82304384
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
知识型员工与人工智能合作中的管理挑战:信任难题、责任难题与技术框架
  • 批准号:
    72302217
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326621
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
  • 批准号:
    2326622
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
  • 批准号:
    LP230100436
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
CAP: AI-Assisted Supervisory Control of Wind Farm Connection to the Grid for Stability Monitoring
CAP:人工智能辅助风电场并网监控以进行稳定性监测
  • 批准号:
    2334256
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了