Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
基本信息
- 批准号:2301014
- 负责人:
- 金额:$ 71.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the growing ubiquity of smartphones and other mobile devices, image sharing is gaining increasing popularity in social networks. Privacy protection has now become a crucial issue to be addressed because sharing images can reveal personal and social environments and details of private lives. While many social media allow users to set privacy preferences, these are rarely sufficient due to the limitations of the options, complexity of the problem, and the tedious nature of privacy configuration. The objective of this project is to design an intelligent and automatic broad-spectrum image protection system that offers provable privacy guarantees for multiple parties involved in social image sharing while maintaining image quality. Specifically, the researchers on this project aim to overcome the following challenges: (i) Privacy protection for human subjects and sensitive objects in the background of the images; (ii) Consideration of location-dependent image sensitivities whereby images taken at certain places (e.g., pubs, hospitals) may impact privacy, such as people in the images who do not want their occurrences or co-occurrences at those locations to be known; (iii) Strong enforcement of the privacy protection that conforms with different privacy needs of multiple people in the same image. The success of the proposed research will address the rising privacy concerns of image sharing on social sites and benefit billions of social network users. A range of educational activities will be also carried out including curriculum development, professional training for college students and outreach to K-12 teachers and students, with emphasis on under-represented groups.This project will greatly advance the state-of-the-art facial privacy protection during online image sharing with the following innovative research ideas. First, a new image privacy policy language and an efficient policy management system will be designed for managing broad-spectrum privacy concerns of multiple parties. Second, formal privacy models will be defined to quantify privacy risks and provide provable privacy guarantees during policy enforcement. Third, new deep-learning-based image modification approaches such as facial modification/replacement and image cropping will be investigated to simultaneously address different users' privacy needs regarding the same image while preserving the aesthetics nature. Finally, a combination of interface and incentive design will be conducted to obtain more accurate user feedback and evaluate the effectiveness and practicality of the proposed system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着智能手机和其他移动设备无处不在,图像共享在社交网络中的普及越来越多。隐私保护现已成为要解决的关键问题,因为共享图像可以揭示个人和社会环境以及私人生活的细节。尽管许多社交媒体允许用户设置隐私偏好,但由于选项的局限性,问题的复杂性以及隐私配置的繁琐性质,这些媒体很少足够。该项目的目的是设计一个智能,自动的广谱图像保护系统,该系统为参与社交形象共享的多个政党提供了可证明的隐私保证,同时保持图像质量。具体而言,该项目的研究人员旨在克服以下挑战:(i)图像背景中对人类受试者和敏感物体的隐私保护; (ii)考虑位置依赖的图像敏感性,在某些地方(例如,酒吧,医院)拍摄的图像可能会影响隐私,例如图像中不希望自己的事件或在这些位置发生共同发生的人; (iii)强大的执行隐私保护符合同一形象中多人的不同隐私需求。拟议的研究的成功将解决社交网站上图像共享的不断上升的隐私问题,并使数十亿个社交网络用户受益。还将进行一系列教育活动,包括课程开发,对大学生的专业培训以及向K-12教师和学生推广,重点是代表性不足的小组。该项目将在与以下创新研究思想的在线图像共享期间在线图像共享期间的最先进的面部隐私保护。首先,将设计一种新的图像隐私政策语言和有效的策略管理系统,以管理多方的广谱隐私问题。其次,将定义正式的隐私模型来量化隐私风险并在政策执行期间提供可证明的隐私保证。第三,将研究新的基于深度学习的图像修改方法,例如面部修改/替换和图像裁剪,以同时满足不同用户在同一图像的隐私需求,同时保留美学性质。最后,将进行界面和激励设计的组合,以获得更准确的用户反馈并评估拟议系统的有效性和实用性。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dan Lin其他文献
Multidimensional Parallelization for Streaming Text Processing Applications Based on Parabix Framework
基于Parabix框架的流式文本处理应用的多维并行化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dan Lin - 通讯作者:
Dan Lin
Using baseline gene expression for multi-Compound screening in early drug development experiments.
在早期药物开发实验中使用基线基因表达进行多化合物筛选。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Adetayo S Kasim;Dan Lin;Z. Shkedy;W. Talloen;L. Bijnens - 通讯作者:
L. Bijnens
Exploration of role of market in perishable goods
探索市场在易腐烂商品中的作用
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Dan Lin - 通讯作者:
Dan Lin
Cointegration analysis of tourism demand by Mainland China in Taiwan and stock investment strategy
中国大陆赴台旅游需求协整分析及股票投资策略
- DOI:
10.18533/jefs.v3i06.163 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yu;Dan Lin;Lu Lin - 通讯作者:
Lu Lin
Can Disclosure Quality Explain Dividend Payouts
披露质量可以解释股息支付吗
- DOI:
10.5539/ibr.v7n7p10 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dan Lin;Hsien;Lie - 通讯作者:
Lie
Dan Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dan Lin', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
- 批准号:
2243161 - 财政年份:2022
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
- 批准号:
2114141 - 财政年份:2021
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
- 批准号:
2027398 - 财政年份:2020
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
- 批准号:
1852554 - 财政年份:2018
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
- 批准号:
1651455 - 财政年份:2016
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
MASTER: Missouri Advanced Security Training, Educa
硕士:密苏里州高级安全培训,Educa
- 批准号:
1433659 - 财政年份:2014
- 资助金额:
$ 71.25万 - 项目类别:
Continuing Grant
CSR: EAGER: Collaborative Research: Brokerage Services for the Next Generation Cloud
CSR:EAGER:协作研究:下一代云的经纪服务
- 批准号:
1250327 - 财政年份:2012
- 资助金额:
$ 71.25万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 71.25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 71.25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 71.25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 71.25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 71.25万 - 项目类别:
Continuing Grant