Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees

合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护

基本信息

  • 批准号:
    2114141
  • 负责人:
  • 金额:
    $ 71.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

With the growing ubiquity of smartphones and other mobile devices, image sharing is gaining increasing popularity in social networks. Privacy protection has now become a crucial issue to be addressed because sharing images can reveal personal and social environments and details of private lives. While many social media allow users to set privacy preferences, these are rarely sufficient due to the limitations of the options, complexity of the problem, and the tedious nature of privacy configuration. The objective of this project is to design an intelligent and automatic broad-spectrum image protection system that offers provable privacy guarantees for multiple parties involved in social image sharing while maintaining image quality. Specifically, the researchers on this project aim to overcome the following challenges: (i) Privacy protection for human subjects and sensitive objects in the background of the images; (ii) Consideration of location-dependent image sensitivities whereby images taken at certain places (e.g., pubs, hospitals) may impact privacy, such as people in the images who do not want their occurrences or co-occurrences at those locations to be known; (iii) Strong enforcement of the privacy protection that conforms with different privacy needs of multiple people in the same image. The success of the proposed research will address the rising privacy concerns of image sharing on social sites and benefit billions of social network users. A range of educational activities will be also carried out including curriculum development, professional training for college students and outreach to K-12 teachers and students, with emphasis on under-represented groups.This project will greatly advance the state-of-the-art facial privacy protection during online image sharing with the following innovative research ideas. First, a new image privacy policy language and an efficient policy management system will be designed for managing broad-spectrum privacy concerns of multiple parties. Second, formal privacy models will be defined to quantify privacy risks and provide provable privacy guarantees during policy enforcement. Third, new deep-learning-based image modification approaches such as facial modification/replacement and image cropping will be investigated to simultaneously address different users' privacy needs regarding the same image while preserving the aesthetics nature. Finally, a combination of interface and incentive design will be conducted to obtain more accurate user feedback and evaluate the effectiveness and practicality of the proposed system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着智能手机和其他移动设备的日益普及,图像共享在社交网络中越来越受欢迎。由于共享图像可以揭示个人和社会环境以及私人生活细节,隐私保护现在已成为需要解决的关键问题。虽然许多社交媒体允许用户设置隐私偏好,但由于选项的限制、问题的复杂性以及隐私配置的繁琐性,这些设置很少是足够的。该项目的目标是设计一种智能、自动的广谱图像保护系统,为参与社交图像共享的多方提供可证明的隐私保证,同时保持图像质量。具体来说,该项目的研究人员旨在克服以下挑战:(i)对图像背景中的人体主体和敏感物体的隐私保护; (ii) 考虑与位置相关的图像敏感性,即在某些地方(例如酒吧、医院)拍摄的图像可能会影响隐私,例如图像中的人不希望知道自己在这些位置的出现或同时出现; (三)隐私保护力度加大,符合同一图像多人的不同隐私需求。这项研究的成功将解决社交网站上图像共享日益增长的隐私问题,并使数十亿社交网络用户受益。还将开展一系列教育活动,包括课程开发、大学生专业培训以及对 K-12 教师和学生的推广,重点关注代表性不足的群体。该项目将极大地推进最先进的技术在线图像共享过程中的面部隐私保护具有以下创新研究思路。首先,将设计新的图像隐私政策语言和高效的政策管理系统,以管理多方的广谱隐私问题。其次,将定义正式的隐私模型来量化隐私风险并在政策执行过程中提供可证明的隐私保证。第三,将研究基于深度学习的新图像修改方法,例如面部修改/替换和图像裁剪,以同时满足不同用户对同一图像的隐私需求,同时保留美观性。最后,将进行界面和激励设计相结合,以获得更准确的用户反馈,并评估所提议系统的有效性和实用性。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和评价进行评估,认为值得支持。更广泛的影响审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single View Facial Age Estimation Using Deep Learning with Cascaded Random Forests
  • DOI:
    10.1007/978-3-030-89131-2_26
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Imad Eddine Toubal;Linquan Lyu;D. Lin;K. Palaniappan
  • 通讯作者:
    Imad Eddine Toubal;Linquan Lyu;D. Lin;K. Palaniappan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Lin其他文献

Exploration of role of market in perishable goods
探索市场在易腐烂商品中的作用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Lin
  • 通讯作者:
    Dan Lin
Cointegration analysis of tourism demand by Mainland China in Taiwan and stock investment strategy
中国大陆赴台旅游需求协整分析及股票投资策略
Multidimensional Parallelization for Streaming Text Processing Applications Based on Parabix Framework
基于Parabix框架的流式文本处理应用的多维并行化
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dan Lin
  • 通讯作者:
    Dan Lin
Using baseline gene expression for multi-Compound screening in early drug development experiments.
在早期药物开发实验中使用基线基因表达进行多化合物筛选。
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adetayo S Kasim;Dan Lin;Z. Shkedy;W. Talloen;L. Bijnens
  • 通讯作者:
    L. Bijnens
Confidence and Prediction in Linear Mixed Models: Do Not Concatenate the Random Effects. Application in an Assay Qualification Study
线性混合模型中的置信度和预测:不要连接随机效应。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Francq;Dan Lin;W. Hoyer
  • 通讯作者:
    W. Hoyer

Dan Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Lin', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Broad-Spectrum Facial Image Protection with Provable Privacy Guarantees
合作研究:SaTC:核心:中:具有可证明隐私保证的广谱面部图像保护
  • 批准号:
    2301014
  • 财政年份:
    2022
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
  • 批准号:
    2243161
  • 财政年份:
    2022
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Self-Learning and Self-Evolving Detection of Altered, Deceptive Images and Videos
协作研究:SaTC:核心:媒介:篡改、欺骗性图像和视频的自学习和自进化检测
  • 批准号:
    2027398
  • 财政年份:
    2020
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
  • 批准号:
    1852554
  • 财政年份:
    2018
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Standard Grant
EAGER: TWC: Collaborative: iPrivacy: Automatic Recommendation of Personalized Privacy Settings for Image Sharing
EAGER:TWC:协作:iPrivacy:自动推荐图像共享的个性化隐私设置
  • 批准号:
    1651455
  • 财政年份:
    2016
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Standard Grant
MASTER: Missouri Advanced Security Training, Educa
硕士:密苏里州高级安全培训,Educa
  • 批准号:
    1433659
  • 财政年份:
    2014
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Continuing Grant
CSR: EAGER: Collaborative Research: Brokerage Services for the Next Generation Cloud
CSR:EAGER:协作研究:下一代云的经纪服务
  • 批准号:
    1250327
  • 财政年份:
    2012
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 71.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了