SHINE: Analysis of Ion Kinetic Instabilities in the Solar Wind Observed Near the Sun with Hybrid Modeling and Machine Learning
SHINE:利用混合建模和机器学习分析太阳附近观测到的太阳风中的离子动力学不稳定性
基本信息
- 批准号:2300961
- 负责人:
- 金额:$ 59.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-15 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The solar wind includes charged particles and magnetic fields emanating from the Sun’s outer layers. Space weather results from interactions between the solar wind and the Earth’s geomagnetic field. Therefore, it is important to understand the detailed processes that occur within the solar wind. This project explores the physics of the solar wind through analysis of satellite observations and development of machine learning models. Undergraduate and graduate students will be trained in interdisciplinary research including space plasma physics and machine learning techniques. Also, an early career post-doctoral researcher will be supported. This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences.Motivated by new observations with NASA’s Parker Solar Probe (PSP) mission, the science objective of this project is to investigate the heating and acceleration of the solar wind plasma associated with proton and alpha particle temperature anisotropy evolution, their relative drift and beaming velocities, and the associated ion kinetic instabilities. The work will focus on the effects of proton beams, detected by PSP/SPAN-I on the nonlinear evolution of the magnetosonic instability. The magnetic wave spectra and energy partition between the ions and the electromagnetic fields will be determined focusing on ion kinetic scales. The team will analyze the PSP/SPAN-I data of the proton and alpha particle velocity distribution functions (VDFs) with beams during perihelia encounters, as well as plasma moments such as density, anisotropic temperature, and alpha relative abundance data. The FIELDS instrument will provide the corresponding kinetic wave activity magnitude, spectra, and polarizations. Guided by the observations, the team will use 2.5D and 3D hybrid-particle-in-cell (hybrid-PIC) models of kinetic protons and alpha particles with background electron fluid in an expanding box model to study the kinetic instabilities driven by initially unstable non- Maxwellian VDFs such as super-Alfvénic beams and ion relative drifts in the inner solar wind. The models will be used to calculate the physical properties and nonlinear evolution of the proton and alpha particle populations in the expanding solar wind, such as the ion drift speeds, anisotropic temperatures, magnetic energy and spectra, and the associated plasma heating processes. They will develop Artificial Intelligence Machine Learning (AI/ML) methods to automate the detection of unstable VDFs and classification of the kinetic instabilities using semi-supervised (i.e., labeled, and unlabeled data) and supervised (i.e., labeled data) ML methods such as multi-layered (i.e., deep) neural networks (DNNs).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
太阳风包括来自太阳外层发出的带电颗粒和磁场。太空天气是由太阳风与地球地磁场之间的相互作用引起的。因此,重要的是要了解太阳风中发生的详细过程。该项目通过分析卫星观测和机器学习模型的开发来探索太阳风的物理。本科生和研究生将接受跨学科研究的培训,包括太空等离子体物理和机器学习技术。此外,还将支持早期职业生涯后研究人员。 This project is co-funded by the Directorate for Geosciences to support AI/ML advancement in the geosciences.Motivated by new observations with NASA’s Parker Solar Probe (PSP) mission, the science objective of this project is to investigate the heating and acceleration of the solar wind plasma associated with Proton and alpha particle temperature anisotropy evolution, their relative drift and beaming velocities, and the associated ion动力学不稳定性。这项工作将集中于质子束的影响,由PSP/Span-I检测到对磁不稳定性的非线性演化。离子和电磁场之间的磁波光谱和能量分配将确定关注离子动力学尺度。该团队将在近调纤毛遇到期间使用梁的质子和α粒子速度分布函数(VDF)的PSP/SPS-I数据,以及诸如密度,各向异性温度和α相对抽象数据等血浆矩时的束。场仪器将提供相应的动力波活性幅度,光谱和极化。在观察结果的指导下,团队将在扩展的框模型中使用具有背景电子流体的2.5D和3D混合粒子(混合PIC)模型,以研究最初不稳定的非麦克斯韦VDF驱动的动力学不稳定型,例如超级allfvéninesolar and solar and solar and solar and Innel solar in Inter solar in Innine In In In In Inter and Inter Alar in Inner solar in Inter and Inter Arin In In Inne In In In Inne In Inner Solar。这些模型将用于计算扩展的太阳风中质子和α颗粒种群的物理性质和非线性演化,例如离子钻速度,各向异性温度,磁能和光谱以及相关的等离子体加热过程。 They will develop Artificial Intelligence Machine Learning (AI/ML) methods to automate the detection of unstable VDFs and classification of the kinetic instabilities using semi-supervised (i.e., labeled, and unlabeled data) and supervised (i.e., labeled data) ML methods such as multi-layered (i.e., deep) neural networks (DNNs).This award reflects NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响审查标准来评估值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leon Ofman其他文献
THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODELS OF TWISTED MULTITHREADED CORONAL LOOP OSCILLATIONS
- DOI:
10.1088/0004-637x/694/1/502 - 发表时间:
2009-03 - 期刊:
- 影响因子:0
- 作者:
Leon Ofman - 通讯作者:
Leon Ofman
Leon Ofman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leon Ofman', 18)}}的其他基金
Multi-ion Dynamics of the Slow Solar Wind in Coronal Streamers
日冕流中缓慢太阳风的多离子动力学
- 批准号:
1059838 - 财政年份:2011
- 资助金额:
$ 59.89万 - 项目类别:
Continuing Grant
Space Weather: A Geometric Model Applied to Earth-directed LASCO Halo Coronal Mass Ejections (CMEs)
空间天气:应用于地球定向 LASCO 晕日冕物质抛射 (CME) 的几何模型
- 批准号:
0207588 - 财政年份:2002
- 资助金额:
$ 59.89万 - 项目类别:
Standard Grant
Multi-fluid and Hybrid Models of Waves in Coronal Structures
日冕结构中波的多流体和混合模型
- 批准号:
0135889 - 财政年份:2002
- 资助金额:
$ 59.89万 - 项目类别:
Continuing Grant
相似国自然基金
联合连续弛豫时间分布与物理阻抗模型的锂离子电池极化特性演变分析方法
- 批准号:22309205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
固相荧光内滤用于极端条件下砷、硫、碘等易变价离子的现场分析研究
- 批准号:22376144
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
元素标记单颗粒等离子体质谱数字检测新方法及其生物分析应用
- 批准号:22374111
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
藏色岗日冰芯近9 ka BP以来高分辨率含氮离子记录及来源分析
- 批准号:42301137
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于碳点纳米酶的放射性核素离子双/三模式原位可视化分析研究
- 批准号:22306116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Examining the Function of a Novel Protein in the Cardiac Junctional Membrane Complex
检查心脏连接膜复合体中新型蛋白质的功能
- 批准号:
10749672 - 财政年份:2024
- 资助金额:
$ 59.89万 - 项目类别:
High-Resolution Ion Mobility Mass Spectrometer for Complex Mixture Analysis
用于复杂混合物分析的高分辨率离子淌度质谱仪
- 批准号:
537609375 - 财政年份:2024
- 资助金额:
$ 59.89万 - 项目类别:
Major Research Instrumentation
Comprehensive numerical analysis of ICRF heating with fast-ion-driven instabilities in toroidal plasmas
对环形等离子体中快速离子驱动不稳定性的 ICRF 加热进行全面数值分析
- 批准号:
24K17032 - 财政年份:2024
- 资助金额:
$ 59.89万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
IMAGINE - Ion beaM Analysis to decipher the bioloGical response Induced by Nanoplastics at Environmentally realistic concentration
想象 - 离子束分析可破译纳米塑料在环境实际浓度下引起的生物反应
- 批准号:
EP/Z000629/1 - 财政年份:2024
- 资助金额:
$ 59.89万 - 项目类别:
Research Grant
Ion mobility mass spectrometer with electrospray ionisation (ESI-IMS-MS) for protein analysis
用于蛋白质分析的电喷雾电离离子淌度质谱仪 (ESI-IMS-MS)
- 批准号:
531399310 - 财政年份:2023
- 资助金额:
$ 59.89万 - 项目类别:
Major Research Instrumentation