CNS Core: Small: Towards Timing-Predictable Autonomy in DNN-driven Embedded Systems
CNS 核心:小型:在 DNN 驱动的嵌入式系统中实现时序可预测的自主性
基本信息
- 批准号:2300525
- 负责人:
- 金额:$ 48.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning techniques, particularly deep neural networks (DNNs), are enabling dramatically better autonomy in important domains, such as robotics and transportation. For instance, in automotive systems, DNNs are used to map raw pixels from on-vehicle cameras to steering control decisions. Recent end-to-end self-driving frameworks even make it possible for DNNs to learn to self-steer from limited human driving datasets. NVIDIA and Audi recently announced their plans to deliver DNN-based automated vehicles. A major challenge of safely and reliably adopting DNNs in any safety-critical embedded systems (e.g., cars) is the need to ensure timing predictability (i.e., enabling timing constraints to be analytically validated at design time), which is one of the most important tenets in the certification required for such safety-critical systems. For example, the functional correctness of an automobile hinges crucially upon temporal correctness, as the control operations depend on the processing of certain environmental sensing and computation tasks within specific time constraints. Unfortunately, it is not straightforward to achieve timing predictability in such systems, due to the resource bottlenecks that DNNs can impose. The goal of this research is to achieve timing predictability in DNN-driven autonomous embedded systems. A novel system model leveraging Heijunka, a mature production leveling approach first developed by Toyota, will be established. New DNN-aware, real-time resource allocation methods and associated analysis techniques for validating timing constraints will be developed that can be applied in DNN-driven embedded systems. Moreover, an open-source ecosystem with efficient memory management under heterogeneous hardware architectures will be implemented. The outcome of this project will pave the way to enable DNN-driven solutions to be safely and confidently adopted in many embedded domains in which timing predictability is a natural requirement. This project will also result in a pipeline of computer engineers and scientists who are skilled in the interdisciplinary nature of DNN-driven embedded systems, as well as increase awareness of real-time and autonomous system design concepts among students at all academic levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习技术,尤其是深度神经网络(DNNS),在重要领域(例如机器人技术和运输)中可以极大地更好地自治。例如,在汽车系统中,DNN用于将原始像素从车载摄像机映射到转向控制决策。最近的端到端自动驾驶框架甚至使DNN可以从有限的人类驾驶数据集中学习自动发展。 NVIDIA和奥迪最近宣布了他们提供基于DNN的自动车辆的计划。在任何安全关键的嵌入式系统(例如,汽车)中安全可靠地采用DNN的主要挑战是确保正时可预测性(即,在设计时间进行分析验证的时序限制),这是对此类安全临界系统所需的确认性原则之一。例如,汽车的功能正确性以时间正确性至关重要,因为控制操作取决于在特定时间限制内处理某些环境感应和计算任务的处理。不幸的是,由于DNN可以施加的资源瓶颈,在此类系统中实现定时可预测性并不直接。这项研究的目的是在DNN驱动的自动嵌入式系统中实现定时可预测性。将建立一个新型的系统模型,该模型将建立由丰田最初开发的成熟生产级别方法。将开发可在DNN驱动的嵌入式系统中应用的新的DNN感知,实时资源分配方法和相关的分析技术,以验证时间限制。此外,将实施一个在异质硬件体系结构下具有有效内存管理的开源生态系统。该项目的结果将为使DNN驱动的解决方案的安全和自信地在许多嵌入式域中被安排和自信地采用,在这些嵌入式域中,定时可预测性是自然要求。该项目还将导致计算机工程师和科学家的渠道,他们熟练于DNN驱动的嵌入式系统的跨学科性质,并提高对所有学术层面学生中实时和自主系统设计概念的认识。这项奖项在所有学术级别上。这项奖项反映了NSF的法定任务,并通过评估该基金会的智力效果,并通过评估了基金会的范围和广泛的范围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cong Liu其他文献
An ERP study on novel word learning in an immersive virtual reality context
沉浸式虚拟现实环境中新词学习的 ERP 研究
- DOI:
10.1017/s136672892300038x - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Lu Jiao;Mengrui Zhu;Zijie Xu;Guanzhu Zhou;John W. Schwieter;Cong Liu - 通讯作者:
Cong Liu
A General Framework to Detect Design Patterns by Combining Static and Dynamic Analysis Techniques
结合静态和动态分析技术来检测设计模式的通用框架
- DOI:
10.1142/s0218194021400027 - 发表时间:
2021 - 期刊:
- 影响因子:0.9
- 作者:
Cong Liu - 通讯作者:
Cong Liu
Optimized multi-exposure optical path with a single laser pulse for the measurement of ultra-high speed
优化的单激光脉冲多次曝光光路,用于超高速测量
- DOI:
10.1063/5.0036557 - 发表时间:
2021-04 - 期刊:
- 影响因子:1.6
- 作者:
Cunhong Wang;Cong Liu;Xingyi Zhang - 通讯作者:
Xingyi Zhang
Temperature-dependent creep aging behavior of 2A14 aluminum alloy
2A14铝合金随温度变化的蠕变时效行为
- DOI:
10.1016/j.jmrt.2022.05.109 - 发表时间:
2022-05 - 期刊:
- 影响因子:0
- 作者:
Wenfang Yu;Lihua Zhan;Yongqian Xu;Kai Chen;Youliang Yang;Lingzhi Xu;Nanhui Peng;Bolin Ma;Cong Liu;Zanchong Chen - 通讯作者:
Zanchong Chen
Ectopic expression of fungal EcGDH improves nitrogen assimilation and grain yield in rice.
真菌 EcGDH 的异位表达可改善水稻的氮同化和籽粒产量。
- DOI:
10.1111/jipb.12519 - 发表时间:
2018-02 - 期刊:
- 影响因子:0
- 作者:
Dongying Tang;Yuchong Peng;Jianzhong Lin;Changqing Du;Yuanzhu Yang;Dan Wang;Cong Liu;Lu Yan;Xiaoying Zhao;Xia Li;Liangbi Chen;Xuanming Liu - 通讯作者:
Xuanming Liu
Cong Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cong Liu', 18)}}的其他基金
Collaborative Research: CSR: Medium: MemDrive: Memory-Driven Full-Stack Collaboration for Autonomous Embedded Systems
协作研究:CSR:媒介:MemDrive:自主嵌入式系统的内存驱动全栈协作
- 批准号:
2312397 - 财政年份:2023
- 资助金额:
$ 48.4万 - 项目类别:
Continuing Grant
RUI: Relationship crafting after workplace ostracism in racial minority employees: The role of autonomic arousal, emotions, and cognitive attributions
RUI:少数族裔员工在工作场所受到排斥后的关系塑造:自主唤醒、情绪和认知归因的作用
- 批准号:
2243983 - 财政年份:2023
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
CAREER: D3: Addressing Emerging Data-Induced Challenges in Embedded and Real-Time Systems
职业:D3:解决嵌入式和实时系统中新出现的数据引发的挑战
- 批准号:
2230968 - 财政年份:2022
- 资助金额:
$ 48.4万 - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Timeliness vs. Trustworthiness: Balancing Predictability and Security in Time-Sensitive CPS Design.
协作研究:CPS:中:及时性与可信度:在时间敏感的 CPS 设计中平衡可预测性和安全性。
- 批准号:
2230969 - 财政年份:2022
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
CNS Core: Small: Towards Timing-Predictable Autonomy in DNN-driven Embedded Systems
CNS 核心:小型:在 DNN 驱动的嵌入式系统中实现时序可预测的自主性
- 批准号:
2135625 - 财政年份:2022
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Timeliness vs. Trustworthiness: Balancing Predictability and Security in Time-Sensitive CPS Design.
协作研究:CPS:中:及时性与可信度:在时间敏感的 CPS 设计中平衡可预测性和安全性。
- 批准号:
2038727 - 财政年份:2021
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
CAREER: D3: Addressing Emerging Data-Induced Challenges in Embedded and Real-Time Systems
职业:D3:解决嵌入式和实时系统中新出现的数据引发的挑战
- 批准号:
1750263 - 财政年份:2018
- 资助金额:
$ 48.4万 - 项目类别:
Continuing Grant
CSR: Small: Predictable Real-Time Computing in GPU-enabled Systems
CSR:小型:支持 GPU 的系统中的可预测实时计算
- 批准号:
1527727 - 财政年份:2015
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
US-Singapore Workshop: Collaborative Research: Understand the World by Analyzing Many Video Streams
美国-新加坡研讨会:合作研究:通过分析许多视频流了解世界
- 批准号:
1427824 - 财政年份:2014
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
相似国自然基金
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
空间邻近标记技术研究莱茵衣藻蛋白核小管与碳浓缩机制的潜在关系
- 批准号:32300220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
polyG蛋白聚集体诱导小胶质细胞活化在神经元核内包涵体病中的作用及机制研究
- 批准号:82301603
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
- 批准号:
2322919 - 财政年份:2024
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
CNS Core: Small: Network Wide Sensing by Leveraging Cellular Communication Networks
CNS 核心:小型:利用蜂窝通信网络进行全网络传感
- 批准号:
2343469 - 财政年份:2024
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
CNS Core: Small: Intelligent Fault Injection to Expose and Reproduce Production-Grade Bugs in Cloud Systems
CNS 核心:小型:智能故障注入以暴露和重现云系统中的生产级错误
- 批准号:
2317698 - 财政年份:2023
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
CNS Core: Small: Repurposing Smartphones to Minimize Carbon
CNS 核心:小型:重新利用智能手机以最大限度地减少碳排放
- 批准号:
2233894 - 财政年份:2023
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 48.4万 - 项目类别:
Standard Grant