CPS: Medium: Connected Federated Farms: Privacy-Preserving Cyber Infrastructure for Collaborative Smart Farming
CPS:中:互联联合农场:用于协作智能农业的隐私保护网络基础设施
基本信息
- 批准号:2212878
- 负责人:
- 金额:$ 118.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the advancements in sensing technologies, agricultural farm management has transformed into a data-enabled process. Data collected at farms enabled artificial intelligence (AI) frameworks to develop models capable of predicting traits such as crop yields and health conditions, allowing for data-informed decision-making. However, in the current state of practice, these smart farms are siloed, developing AI models solely based on data obtained from a farm, ignoring the data generated in other farms. This lack of collaboration among farms results in limited generalization capability of models and directly impacts farm management decisions. While pooling data from a network of farms into a centralized server to generate more robust models is possible, most farmers are reluctant to share their data due to data privacy concerns. Therefore, this project aims to develop a novel holistic framework that allows for collaboration between farms, preserves privacy, and encourages simultaneous collaboration and personalization in the data-driven modeling of agricultural farms. The constructed models are used in farm decision-making and management. This framework will alleviate farmers’ data privacy concerns, resulting in further adoption of smart farming technologies. Therefore, the project may result in the more prevalent use of digital tools by farms, improving management decisions and increasing farm productivity. Eventually, the acceptance and use of digital solutions will enhance food quality and decrease the environmental footprint. Several educational and outreach efforts for the integration of research into undergraduate and graduate courses and broadening the participation of underrepresented groups are envisioned.The project aims to develop a federated analytics framework for high-dimensional and big data common in smart agricultural farms. The project will design a novel federated robust tensor-based modeling paradigm that enables exploiting the spatiotemporal structure of smart farm datasets. When the proposed approach is used, each farm creates a local model that is then transmitted to an aggregator, which creates an aggregated model. The aggregated model is then broadcast to each farm to generate a personalized model that supports local decision-making. The low-dimensional embedding of the tensor model allows for reduced model communication between the farms and the aggregator. Differential privacy approaches will be investigated to enhance the privacy-preservation properties of the proposed framework. The developed AI-enhanced connected multi-farm system will be tested in citrus as a case study. The proposed framework can contribute to other areas, such as modeling and monitoring multi-farm renewable energy systems and multi-facility advanced manufacturing systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着传感技术的进步,农业农场管理已转变为数据驱动的流程,农场收集的数据使人工智能 (AI) 框架能够开发能够预测作物产量和健康状况等性状的模型,从而实现数据知情。然而,在目前的实践中,这些智能农场都是孤立的,仅根据从一个农场获得的数据来开发人工智能模型,而忽略了其他农场产生的数据,导致农场之间缺乏协作,导致泛化能力有限。模型和直接影响虽然可以将农场网络中的数据汇集到集中服务器中以生成更强大的模型,但由于数据隐私问题,大多数农民不愿意共享他们的数据,因此,该项目旨在开发一个新颖的整体框架。允许农场之间的协作,保护隐私,并鼓励农场数据驱动建模中的同步协作和个性化。该框架将减轻农民的数据隐私问题。因此,该项目可能会进一步采用智能农业技术。农场更普遍地使用数字工具,改善管理决策并提高农场生产力,最终,数字解决方案的接受和使用将提高食品质量并减少环境足迹,以将研究纳入本科生和研究生。该项目旨在为智能农业农场中常见的高维大数据开发联合分析框架,该项目将设计一种新颖的基于张量的联合鲁棒建模范例,该范例能够利用的时空结构当使用所提出的方法时,每个农场都会创建一个本地模型,然后将其传输到聚合器,聚合器将创建聚合模型,然后将聚合模型广播到每个农场以生成支持本地决策的个性化模型。张量模型的低维嵌入可以减少农场和聚合器之间的模型通信,以增强所开发的人工智能增强连接的隐私保护特性。多农场系统将作为案例研究在柑橘中进行测试。所提出的框架可以为其他领域做出贡献,例如建模和监测多农场可再生能源系统和多设施先进制造系统。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mostafa Reisi Gahrooei其他文献
FedPAR: Federated PARAFAC2 tensor factorization for computational phenotyping
FedPAR:用于计算表型分析的联合 PARAFAC2 张量分解
- DOI:
10.1080/24725579.2024.2333261 - 发表时间:
2024-04-08 - 期刊:
- 影响因子:0
- 作者:
Mengyu Zhao;Mostafa Reisi Gahrooei - 通讯作者:
Mostafa Reisi Gahrooei
Federated generalized scalar-on-tensor regression
联合广义标量张量回归
- DOI:
10.1080/00224065.2023.2246600 - 发表时间:
2023-09-25 - 期刊:
- 影响因子:2.5
- 作者:
Elif Konyar;Mostafa Reisi Gahrooei - 通讯作者:
Mostafa Reisi Gahrooei
Robust tensor-on-tensor regression for multidimensional data modeling
用于多维数据建模的鲁棒张量对张量回归
- DOI:
10.1080/24725854.2023.2183440 - 发表时间:
2023-02-22 - 期刊:
- 影响因子:2.6
- 作者:
H. Lee;Mostafa Reisi Gahrooei;Hongcheng Liu;M. Pacella - 通讯作者:
M. Pacella
Federated Multiple Tensor-on-Tensor Regression (FedMTOT) for Multimodal Data under Data-Sharing Constraints
数据共享约束下多模态数据的联合多张量对张量回归 (FedMTOT)
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.5
- 作者:
Zihan Zhang;Shancong Mou;Mostafa Reisi Gahrooei;Massimo Pacella;Jianjun Shi - 通讯作者:
Jianjun Shi
Robust coupled tensor decomposition and feature extraction for multimodal medical data
多模态医学数据的鲁棒耦合张量分解和特征提取
- DOI:
10.1080/24725579.2022.2141929 - 发表时间:
2022-10-31 - 期刊:
- 影响因子:0
- 作者:
Meng Zhao;Mostafa Reisi Gahrooei;N. Gaw - 通讯作者:
N. Gaw
Mostafa Reisi Gahrooei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mostafa Reisi Gahrooei', 18)}}的其他基金
Collaborative Research: Multi-Agent Adaptive Data Collection for Automated Post-Disaster Rapid Damage Assessment
协作研究:用于灾后自动化快速损害评估的多智能体自适应数据收集
- 批准号:
2316652 - 财政年份:2023
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant
Collaborative Research: A Dynamic Disruption Prediction System for Transportation Networks at a Road-Segment Level of Granularity
合作研究:路段粒度级交通网络动态中断预测系统
- 批准号:
2027024 - 财政年份:2020
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant
相似国自然基金
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
- 批准号:22373002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
- 批准号:42377095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CPS: Medium: Collaborative Research: Transforming Connected and Automated Transportation with Smart Networking, Cooperative Sensing, and Edge Computing
CPS:中:协作研究:通过智能网络、协作传感和边缘计算改变互联和自动化交通
- 批准号:
2409271 - 财政年份:2023
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Transforming Connected and Automated Transportation with Smart Networking, Cooperative Sensing, and Edge Computing
CPS:中:协作研究:通过智能网络、协作传感和边缘计算改变互联和自动化交通
- 批准号:
2038215 - 财政年份:2021
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Transforming Connected and Automated Transportation with Smart Networking, Cooperative Sensing, and Edge Computing
CPS:中:协作研究:通过智能网络、协作传感和边缘计算改变互联和自动化交通
- 批准号:
2038559 - 财政年份:2021
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Automated Discovery of Data Validity for Safety-Critical Feedback Control in a Population of Connected Vehicles
CPS:中:协作研究:自动发现联网车辆中安全关键反馈控制的数据有效性
- 批准号:
1932138 - 财政年份:2019
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Automated Discovery of Data Validity for Safety-Critical Feedback Control in a Population of Connected Vehicles
CPS:中:协作研究:自动发现联网车辆中安全关键反馈控制的数据有效性
- 批准号:
1931927 - 财政年份:2019
- 资助金额:
$ 118.84万 - 项目类别:
Standard Grant