Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions

合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂

基本信息

  • 批准号:
    2247662
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis (CAT) and Chemical Synthesis (SYN) programs in the Division of Chemistry, the Critical Aspects of Sustainability metaprogram (CAS) and the Office of Multidisciplinary Activities (OMA), Tatiana Esipova of Loyola University-Chicago and Tomoyasu Mani of the University of Connecticut are developing a new family of metal- and halogen-free catalysts that are activated by visible light. Upon activation these catalysts are capable of promoting a number of chemical reactions. In contrast to this work, most visible light-activated reactions require catalysts that contain precious metals or halogen atoms and therefore are not considered to be environmentally sustainable. With a focus on overcoming this limitation, the collaborative Mani/Esipova team is employing computational modeling to design and optimize their catalysts and will subsequently test them in light-driven transformations. In addition to all of this, this research program is providing valuable opportunities for students. Undergraduate and graduate students that are involved in this work, including students who have been historically underrepresented in the sciences, are developing intellectually while building skill sets that lie at the intersection of synthetic organic chemistry and physical chemistry. Such training is valuable for their future careers, be it in academia or industry.This research aims to develop a new family of organic heavy atom–free photoredox catalysts that contain a general motif that consists of orthogonal electron donor-acceptor aromatic chromophores. Generally speaking, photocatalysts absorb light and create electronically excited states that facilitate electron transfer reactions in a mild and controlled manner; as a result, they can produce highly reactive intermediates that lead to value-added bond-forming events. Most currently utilized photoredox catalysts employ halogens or precious metals to enhance the production of these excited states. The photoredox catalysts that are developed in this study not only take advantage of an underexplored photophysical phenomenon to produce excited states in pi-conjugated organic molecules, but they avoid the use of heavy atoms including metals and halogens. The research is demonstrating the unique properties and versatility of this new class of organic photoredox catalysts. This research is expected to establish structure-function correlations of donor-acceptor molecules in terms of the efficiency of the generation of the excited state and the associated catalytic activity. This work and the continued development of sustainable catalysts is providing a firm foundation for the continued exploration and the development of organic photoredox catalysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学催化(CAT)和化学合成(SYN)方案的支持下,可持续性元图(CAS)的关键方面以及多学科活动的办公室(OMA),洛约拉大学 - 奇卡哥的Tatiana Esipova和康涅狄格大学的Tomoyasu Mani的Tatiana Esipova通过康涅狄格州的Tomoyasu Mani进行了一家新家族的陪同,并正在开发新的家族。激活后,这些催化剂能够促进许多化学反应。与这项工作相反,大多数可见的光激活反应需要包含贵金属或卤素原子的催化剂,因此不被认为是环境可持续的。为了克服这一限制,该协作Mani/Esipova团队正在采用计算建模来设计和优化其催化剂,并随后在轻度驱动转换中对其进行测试。除此之外,该研究计划还为学生提供了宝贵的机会。参与这项工作的本科生和研究生,包括历史上缺乏科学人数不足的学生在智力上发展,而在合成有机化学和物理化学相交的建筑技能集中。这种培训对于他们的未来职业,无论是在学术界还是行业中都很有价值。这项研究旨在开发一个新的有机沉重原子 - 无光电氧化催化剂,其中包含一个由正交电子供体供体芳香族芳香族组成的一般图案。一般而言,光催化剂吸收光并产生电子激发的状态,以轻度和受控的方式促进电子转移反应。结果,它们可以产生高反应性的中间体,从而导致增值键形成事件。当前大多数利用的光毒催化剂使用卤素或贵金属来增强这些激发态的产生。这项研究中开发的光毒催化剂不仅利用了未经置换的光物理现象来在PI结合的有机分子中产生激发态,而且还避免使用包括金属和卤素在内的重原子。该研究证明了这类新型有机光毒催化剂的独特特性和多功能性。预计这项研究将根据激发态的产生效率和相关的催化活性建立供应者分子的结构 - 功能相关性。这项工作和可持续催化剂的持续发展为持续探索和有机光毒性催化剂的发展提供了坚定的基础。该奖项反映了NSF的法定任务,并通过使用该基金会的知识分子的优点和更广泛的影响来评估NSF的法定任务。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomoyasu Mani其他文献

Electron Localization of Anions Probed by Nitrile Vibrations.
通过腈振动探测阴离子的电子定位。
Vibrational Stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments.
振动斯塔克效应可识别离子配对并确定无电解质环境中的还原电位。
Role of bad dihedral angles: methylfluorenes act as energy barriers for excitons and polarons of oligofluorenes.
不良二面角的作用:甲基芴充当低聚芴的激子和极化子的能量势垒。
Chiroptical properties and their stability for supramolecular assemblies of viologen-modified glutamide derivatives and their reduced derivatives
紫精修饰谷酰胺衍生物及其还原衍生物超分子组装体的手性及其稳定性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mio Ito;Yutaka Kuwahara;Naoya Ryu;Tomoyasu Mani;Hirotaka Ihara;Makoto Takafuji
  • 通讯作者:
    Makoto Takafuji
CENP-A Nucleosomes adopt an Unconventional Shape
  • DOI:
    10.1016/j.bpj.2012.11.3212
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Nikolina Sekulic;Samantha J. Falk;Tomoyasu Mani;Kushol Gupta;Gregory Van Duyne;Sergei A. Vinogradov;Ben E. Black
  • 通讯作者:
    Ben E. Black

Tomoyasu Mani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomoyasu Mani', 18)}}的其他基金

CAREER: Control of Intramolecular Long-Range Charge-Transfer Emission
职业:分子内长程电荷转移发射的控制
  • 批准号:
    2144787
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于CRISPR/Cas9文库筛选的STK19增强舌鳞癌顺铂敏感性的机制研究
  • 批准号:
    82360568
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于磁性CRISPR/Cas13a-SERS生物传感的诺如病毒高敏即时检测及机理研究
  • 批准号:
    32302218
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
  • 批准号:
    82373629
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于内源CRISPR/Cas与模块化报告系统的多杀菌素调控机制与高产策略研究
  • 批准号:
    32370064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了