Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions

合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂

基本信息

  • 批准号:
    2247662
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Catalysis (CAT) and Chemical Synthesis (SYN) programs in the Division of Chemistry, the Critical Aspects of Sustainability metaprogram (CAS) and the Office of Multidisciplinary Activities (OMA), Tatiana Esipova of Loyola University-Chicago and Tomoyasu Mani of the University of Connecticut are developing a new family of metal- and halogen-free catalysts that are activated by visible light. Upon activation these catalysts are capable of promoting a number of chemical reactions. In contrast to this work, most visible light-activated reactions require catalysts that contain precious metals or halogen atoms and therefore are not considered to be environmentally sustainable. With a focus on overcoming this limitation, the collaborative Mani/Esipova team is employing computational modeling to design and optimize their catalysts and will subsequently test them in light-driven transformations. In addition to all of this, this research program is providing valuable opportunities for students. Undergraduate and graduate students that are involved in this work, including students who have been historically underrepresented in the sciences, are developing intellectually while building skill sets that lie at the intersection of synthetic organic chemistry and physical chemistry. Such training is valuable for their future careers, be it in academia or industry.This research aims to develop a new family of organic heavy atom–free photoredox catalysts that contain a general motif that consists of orthogonal electron donor-acceptor aromatic chromophores. Generally speaking, photocatalysts absorb light and create electronically excited states that facilitate electron transfer reactions in a mild and controlled manner; as a result, they can produce highly reactive intermediates that lead to value-added bond-forming events. Most currently utilized photoredox catalysts employ halogens or precious metals to enhance the production of these excited states. The photoredox catalysts that are developed in this study not only take advantage of an underexplored photophysical phenomenon to produce excited states in pi-conjugated organic molecules, but they avoid the use of heavy atoms including metals and halogens. The research is demonstrating the unique properties and versatility of this new class of organic photoredox catalysts. This research is expected to establish structure-function correlations of donor-acceptor molecules in terms of the efficiency of the generation of the excited state and the associated catalytic activity. This work and the continued development of sustainable catalysts is providing a firm foundation for the continued exploration and the development of organic photoredox catalysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化 (CAT) 和化学合成 (SYN) 项目、可持续发展元程序 (CAS) 和多学科活动办公室 (OMA) 的支持下,芝加哥洛约拉大学的 Tatiana Esipova 和康涅狄格大学的 Tomoyasu Mani 正在开发一种新的无金属和无卤素催化剂,这些催化剂在激活后能够被可见光激活。与这项工作相反,大多数可见的光激活反应都需要含有贵金属或卤素原子的催化剂,因此不被认为是环境可持续的。 Esipova 团队正在采用计算模型来设计和优化他们的催化剂,并随后在光驱动的转化中对其进行测试。除此之外,该研究项目还为参与这项工作的学生提供了宝贵的机会。 ,包括学生历史上在科学领域代表性不足的人正在发展智力,同时建立合成有机化学和物理化学交叉领域的技能,这种培训对于他们未来的职业生涯(无论是在学术界还是工业界)都很有价值。一种新的有机无重原子光氧化还原催化剂,包含由正交电子供体-受体芳香族发色团组成的通用基序一般来说,光催化剂吸收光并产生促进电子转移的电子激发态。以温和且受控的方式进行反应;因此,它们可以产生高反应性中间体,从而导致增值的成键事件。目前使用的大多数光氧化还原催化剂都采用卤素或贵金属来增强这些激发态的产生。这项研究开发的催化剂不仅利用了尚未探索的光物理现象在π共轭有机分子中产生激发态,而且避免了使用包括金属和卤素在内的重原子。这项研究预计将在激发态的产生效率和相关催化活性方面建立供体-受体分子的相关功能。可持续催化剂为有机光氧化还原催化的持续探索和发展提供了坚实的基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tomoyasu Mani其他文献

Chiroptical properties and their stability for supramolecular assemblies of viologen-modified glutamide derivatives and their reduced derivatives
紫精修饰谷酰胺衍生物及其还原衍生物超分子组装体的手性及其稳定性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mio Ito;Yutaka Kuwahara;Naoya Ryu;Tomoyasu Mani;Hirotaka Ihara;Makoto Takafuji
  • 通讯作者:
    Makoto Takafuji
Electron Localization of Anions Probed by Nitrile Vibrations.
通过腈振动探测阴离子的电子定位。
Vibrational Stark effects to identify ion pairing and determine reduction potentials in electrolyte-free environments.
振动斯塔克效应可识别离子配对并确定无电解质环境中的还原电位。
Role of bad dihedral angles: methylfluorenes act as energy barriers for excitons and polarons of oligofluorenes.
不良二面角的作用:甲基芴充当低聚芴的激子和极化子的能量势垒。
Nitrile Vibration Reports Induced Electric Field and Delocalization of Electron in the Charge-Transfer State of Aryl Nitriles.
腈振动报告了芳基腈电荷转移状态下的感应电场和电子离域。

Tomoyasu Mani的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tomoyasu Mani', 18)}}的其他基金

CAREER: Control of Intramolecular Long-Range Charge-Transfer Emission
职业:分子内长程电荷转移发射的控制
  • 批准号:
    2144787
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
  • 批准号:
    62305229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用CRISPR/Cas13a基因编辑系统针对BRAFV600E阳性黑色素瘤脑转移瘤精准诊疗技术的研究
  • 批准号:
    82303971
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
AcrIIA16-19蛋白抑制CRISPR-Cas9系统的机制研究
  • 批准号:
    32300036
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于CRISPR/Cas9筛选肝癌进展中关键可变剪切因子及促癌机制研究
  • 批准号:
    82303469
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可递送CRISPR-Cas9/HIF-1α的3D打印血管移植物构建及其血管再生机理研究
  • 批准号:
    82302833
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了