Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
基本信息
- 批准号:2400165
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Professor Michael G. Walter at the University of North Carolina at Charlotte and Professor James M. Hanna at Winthrop University are designing new, low-cost, scalable, and high efficiency photocatalysts, scaffolds that harness light energy for performing chemical transformations. The overall goal is to advance more sustainable, carbon-based photocatalyst scaffolds that will reduce cost and overall environmental impact compared to traditional precious metal-based systems. The study includes the synthesis and study of new catalyst scaffolds, with the goal of advancing fundamental knowledge about how modifications affect reactivity. The new catalysts will then be studied in a variety of chemical transformations that currently rely on expensive-metal photocatalysts. The work will be built upon a new regional collaboration between UNC Charlotte and Winthrop University and will involve both undergraduate and graduate students from both research groups who will gain exposure to diverse and interdisciplinary activities across the practice of chemical research. In addition, the research components will be connected with the classroom teaching of the investigators, introducing photochemical science topics to a diverse group of graduate and undergraduate students. The investigators will continue their collaborations with local science museums, educators, and schools to develop and provide chemistry outreach programs to the Charlotte region.The goal of this research is to study and develop new thiazolo(5,4-d)thiazole (TTz) organic photoredox catalyst derivatives. TTzs are attractive photocatalyst materials due to their low-cost, single reaction step syntheses, non-halogenated, and high photochemically stable heterobicyclic core. TTz photocatalysts will address the need to develop scalable, high efficiency organic photocatalyst tools to drive a wide array of organic transformations. The team hypothesizes that the unique TTz photochemical properties enable new and improve upon existing transformations currently driven with expensive and toxic molecular transition-metal catalysts. Secondly, it is proposed that extended TTz photocatalyst materials will enable lower energy (e.g. red light) driven transformations while helping to tune redox characteristics for specific transformations. Preliminary studies have demonstrated the ability of a series of TTzs to drive reactions with much higher efficiencies than previously used transition metal photocatalysts. The collaborative team will further explore photocatalyst stability, reaction rates, and ability to drive a range of organic transformations. A library of new TTz photocatalyst derivatives will be developed with tunable light absorption properties and redox characteristics. Photochemical studies will be carried out to establish reaction quantum yields, and rates will be monitored using fluorescence and chromogenic TTz coloration changes. This collaborative research program will focus on photochemical efficiency metrics to help guide subsequent generations of TTz photocatalysts with a focus on optimizing performance and versatility. The materials produced by this project can benefit society by contributing to the development of a new series of photocatalyst materials that have the potential to improve synthetic efficiency and lower provide for more sustainable organic synthesis methodology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,北卡罗来纳大学夏洛特分校的 Michael G. Walter 教授和温思罗普大学的 James M. Hanna 教授正在设计新型、低成本、可扩展且高效的光催化剂,利用光能进行化学转化的支架。总体目标是开发更可持续的碳基光催化剂支架,与传统的贵金属系统相比,这将降低成本和总体环境影响。该研究包括新催化剂支架的合成和研究,目的是增进有关修饰如何影响反应性的基础知识。然后,新催化剂将在目前依赖昂贵金属光催化剂的各种化学转化中进行研究。这项工作将建立在北卡罗来纳大学夏洛特分校和温思罗普大学之间新的区域合作的基础上,并将涉及两个研究小组的本科生和研究生,他们将接触化学研究实践中的多样化和跨学科活动。此外,研究部分将与研究人员的课堂教学相结合,向不同的研究生和本科生群体介绍光化学科学主题。研究人员将继续与当地科学博物馆、教育工作者和学校合作,为夏洛特地区开发和提供化学推广计划。这项研究的目标是研究和开发新的噻唑并(5,4-d)噻唑(TTz)有机光氧化还原催化剂衍生物。 TTz 因其低成本、单反应步骤合成、非卤化和高光化学稳定性的杂双环核而成为有吸引力的光催化剂材料。 TTz 光催化剂将满足开发可扩展、高效有机光催化剂工具的需求,以驱动各种有机转化。该团队假设,独特的 TTz 光化学特性能够实现新的转化,并改进目前由昂贵且有毒的分子过渡金属催化剂驱动的现有转化。其次,有人提出,扩展的 TTz 光催化剂材料将能够实现较低能量(例如红光)驱动的转化,同时有助于调整特定转化的氧化还原特性。初步研究表明,一系列 TTz 能够以比以前使用的过渡金属光催化剂更高的效率驱动反应。合作团队将进一步探索光催化剂的稳定性、反应速率以及驱动一系列有机转化的能力。将开发具有可调光吸收特性和氧化还原特性的新型 TTz 光催化剂衍生物库。将进行光化学研究以确定反应量子产率,并使用荧光和显色 TTz 着色变化来监测速率。该合作研究计划将重点关注光化学效率指标,以帮助指导下一代 TTz 光催化剂,重点是优化性能和多功能性。该项目生产的材料可以通过促进开发一系列新的光催化剂材料来造福社会,这些材料有可能提高合成效率并降低提供更可持续的有机合成方法。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Walter其他文献
Histograms of Oriented Gradients for 3D Object Retrieval
用于 3D 对象检索的定向梯度直方图
- DOI:
10.20381/ruor-3406 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Maximilian Scherer;Michael Walter;Tobias Schreck - 通讯作者:
Tobias Schreck
Thoracic Epidural Anesthesia Combined with General Anesthesia: The Preferred Anesthetic Technique for Thoracic Surgery
胸段硬膜外麻醉联合全身麻醉:胸外科首选麻醉技术
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:5.7
- 作者:
V. von Dossow;M. Welte;U. Zaune;E. Martin;Michael Walter;J. Rückert;W. Kox;C. Spies - 通讯作者:
C. Spies
Sampling the Integers with Low Relative Error
- DOI:
10.1007/978-3-030-23696-0_9 - 发表时间:
2019-07 - 期刊:
- 影响因子:0
- 作者:
Michael Walter - 通讯作者:
Michael Walter
Weakening Assumptions for Publicly-Verifiable Deletion
削弱可公开验证删除的假设
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
James Bartusek;Dakshita Khurana;Giulio Malavolta;Alexander Poremba;Michael Walter - 通讯作者:
Michael Walter
Lattice Point Enumeration on Block Reduced Bases
- DOI:
10.1007/978-3-319-17470-9_16 - 发表时间:
2015-05 - 期刊:
- 影响因子:0
- 作者:
Michael Walter - 通讯作者:
Michael Walter
Michael Walter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Walter', 18)}}的其他基金
REU Site: Nanoscale Science Undergraduate Research Experience (NanoSURE) at UNC Charlotte
REU 网站:北卡罗来纳大学夏洛特分校纳米科学本科生研究体验 (NanoSURE)
- 批准号:
2150172 - 财政年份:2022
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
ICorps: Polymer Semiconductor Educational Kits
ICorps:聚合物半导体教育套件
- 批准号:
1903691 - 财政年份:2019
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Renewal: Mineral Physics Studies under the Pressure-Temperature Conditions of Earth's Deep Lower Mantle
更新:地球下地幔深处压力-温度条件下的矿物物理研究
- 批准号:
1722515 - 财政年份:2018
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Deep Mantle Recycling Revealed in Diamonds and their Mineral Inclusions
钻石及其矿物包裹体揭示了深部地幔回收
- 批准号:
NE/J008583/1 - 财政年份:2012
- 资助金额:
$ 51万 - 项目类别:
Research Grant
New models for the Earth's core: the neglected role of nickel - ab initio calculations and high P-T experiments on Fe-Ni alloys
地核的新模型:镍的被忽视的作用 - 从头计算和铁镍合金的高 P-T 实验
- 批准号:
NE/H003541/1 - 财政年份:2010
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Fluids in the Deep Earth: Raman Spectroscopy at High Pressures and Temperatures
地球深处的流体:高压和高温下的拉曼光谱
- 批准号:
NE/H011242/1 - 财政年份:2010
- 资助金额:
$ 51万 - 项目类别:
Research Grant
Metallurgy at Extreme Conditions: Molten Iron-Alloy Constraints on the Light Elements in Earth's Core
极端条件下的冶金:熔融铁合金对地核轻元素的限制
- 批准号:
NE/F019084/1 - 财政年份:2009
- 资助金额:
$ 51万 - 项目类别:
Research Grant
相似国自然基金
基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
- 批准号:62305229
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
应用CRISPR/Cas13a基因编辑系统针对BRAFV600E阳性黑色素瘤脑转移瘤精准诊疗技术的研究
- 批准号:82303971
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AcrIIA16-19蛋白抑制CRISPR-Cas9系统的机制研究
- 批准号:32300036
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于CRISPR/Cas9筛选肝癌进展中关键可变剪切因子及促癌机制研究
- 批准号:82303469
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可递送CRISPR-Cas9/HIF-1α的3D打印血管移植物构建及其血管再生机理研究
- 批准号:82302833
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347912 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
- 批准号:
2347913 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
- 批准号:
2243099 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: CAS-SC: Development of Heavy Atom - Free Photocatalysts for Chemical Reactions
合作研究:CAS-SC:开发用于化学反应的无重原子光催化剂
- 批准号:
2247661 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Standard Grant