Perfect Electromagnetic Teleporting Metasurface Wormholes
完美电磁瞬移超表面虫洞
基本信息
- 批准号:2247287
- 负责人:
- 金额:$ 34.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Metasurfaces have found ubiquitous use in electromagnetics engineering and wireless communication research today. Metasurfaces are 2D arrangements of ‘meta-atoms’, which operate much under the same principles as ordinary light-matter interaction under long-wavelength illumination. For example, when optical light with a wavelength on the order of hundreds of nanometers interacts with the atoms comprising the surface of a table, since the impinging wavelength is thousands of times longer than the breadth of an atom, only the average response of the collection of atoms is perceived (we see the table, not the atoms). By designing materials comprising of designer ‘meta-atoms’ which are at least ten times smaller than the impinging wavelength, the light-matter interaction can be engineered leading to novel wavefront control and electromagnetic phenomena. Most of these metasurfaces, however, are planar. Coevolving with developing 5G/6G communications standards, metasurfaces used for channel optimization will need to also be conformal. In dense urban environments where diffraction strengths of new high-frequency communication frequencies are reduced, conformal metasurfaces which can route electromagnetic energy around corners of building can prove useful. In this work, metasurfaces are designed to create tunnel-like connections through space connecting two space wave ports at distant locations (on opposite sides of a building for example). These conformal teleporting metasurfaces can be used to transfer electromagnetic waves from one side of a building around its corner to an adjacent side using metasurfaces shaped with a 90-degree bend. Devices like these can enhance 5G/6G communications channels using passive and lossless metasurfaces which require no electrical connections to operate, simply affixed to a building similar to hanging a painting. This research will impact education and outreach by creating demonstration days at local high schools in the Blacksburg, VA area, and disseminating the results through new courses at Virginia Tech and short courses at conferences, and engaging undergraduates in research.The principal objectives of this project are to introduce perfect electromagnetic teleporting metasurfaces to the research community, to use the concepts to optimize telecommunications channels in urban environments by routing electromagnetic energy around corners of buildings, and to develop conformal metasurface design approaches which can support the new 5G/6G communications standards where conformal reconfigurable intelligent surfaces have been included (UAV bodies for example). Perfect electromagnetic teleporting metasurfaces create tunnel-like connections through space connecting two space wave ports at distant locations (on opposite sides of a building for example). The incident plane wave field will be absorbed at port 1, perfectly converted into a surface wave which connects the two ports and transfers/delivers power between them, and reradiated from port 2 located at a distant location. The reradiated field from port 2 will be designed with control over its phase and amplitude utilizing all of the power contained in the incident field in a completely passive and lossless way. As the metasurface teleports all of the available energy in the incident wave to the reradiated wave, the operation is said to be perfect. To date, perfect conformal teleporting metasurface operation has not been demonstrated. This work will enable the first experimental demonstration of these types of metasurfaces and will undoubtedly open up new streams of research in the area with unprecedented applications springing henceforth. The designs will be enabled by coupling integral equations with rapid optimization techniques and novel realization approaches based on additive manufacturing and conformal printed circuit design. literature on unit cell design for conformal metasurfaces is very scarce, and one attempting to realize a conformal metasurface using printed circuits may not find a suitable approach when surveying current literature. Hence, this work will also provide approaches to engineers and scientists who need to design and realize conformal metasurfaces.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
超表面在当今的电磁工程和无线通信研究中得到了广泛的应用,超表面是“超原子”的二维排列,其工作原理与长波长照明下的普通光-物质相互作用基本相同。波长约为数百纳米的粒子与构成桌子表面的原子相互作用,因为撞击波长比原子宽度长数千倍,因此只有平均响应原子集合的数量被感知(我们看到的是表格,而不是原子),通过设计由设计的“元原子”组成的材料,这些“元原子”至少比撞击波长小十倍,可以设计领先的光与物质相互作用。然而,随着 5G/6G 通信标准的发展,这些超表面大多是平面的,用于信道优化的超表面也需要在衍射强度较高的密集城市环境中保持共形。随着新的高频通信频率的减少,可以在建筑物拐角处传输电磁能量的共形超表面被证明是有用的。在这项工作中,超表面被设计成通过空间创建类似隧道的连接,连接遥远位置的两个空间波端口。这些共形瞬移超表面可用于使用具有 90 度弯曲形状的超表面将电磁波从建筑物拐角处的一侧传输到相邻侧。使用无源和无损超表面增强 5G/6G 通信通道,无需电气连接即可运行,只需固定在建筑物上(类似于悬挂一幅画)这项研究将通过在弗吉尼亚州布莱克斯堡当地高中举办演示日来影响教育和推广。领域,并通过弗吉尼亚理工大学的新课程和会议上的短期课程传播成果,并让本科生参与研究。该项目的主要目标是向研究界介绍完美的电磁瞬移超表面,利用这些概念通过在建筑物的角落路由电磁能量来优化城市环境中的电信通道,并开发可支持新的 5G/6G 通信标准的共形超表面设计方法,其中包括共形可重构智能表面(例如无人机机身完美电磁隐形传输)。超表面在空间中创建类似隧道的连接,连接远处位置的两个空间波端口(例如在建筑物的相对侧),入射平面波场将在端口 1 处被吸收,完美地转换为表面波。连接两个端口并在它们之间传输/传输功率,并从位于远处的端口 2 进行再辐射。来自端口 2 的再辐射场将设计为利用入射场中包含的所有功率来控制其相位和幅度。由于超表面将入射波中的所有可用能量传送到再辐射波,因此该操作据说是完美的,迄今为止,完美的共形传送超表面操作尚未得到证实。将首次对这些类型的超表面进行实验演示,并且无疑将在该领域开辟新的研究方向,今后将出现前所未有的应用,这些设计将通过将积分方程与快速优化技术和基于增材制造的新颖实现方法相结合来实现。关于共形超表面单元设计的文献非常稀少,尝试使用印刷电路实现共形超表面的人在调查当前文献时可能找不到合适的方法,因此,这项工作也将为工程师提供方法。以及需要的科学家设计和实现共形超表面。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jordan Budhu其他文献
Jordan Budhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
井下环空溢流电磁层析成像快速定量监测方法研究
- 批准号:52374234
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
对空区域复杂电磁环境智能感知与自主对抗
- 批准号:62331019
- 批准年份:2023
- 资助金额:233 万元
- 项目类别:重点项目
带电流型畸变校正的大地电磁三维各向异性自适应反演研究
- 批准号:42304081
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
地面回线源瞬变电磁法磁场数据的三维全波形反演研究
- 批准号:42374169
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
EDIBLES: Environmentally Driven Body-Scale Electromagnetic Co-Sensing
食用:环境驱动的人体规模电磁协同感应
- 批准号:
EP/Y002008/1 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Research Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Standard Grant
CAREER: Gravitational and Electromagnetic Waves on Black Holes
职业:黑洞上的引力波和电磁波
- 批准号:
2336118 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Continuing Grant
Investigating Constraints on Induction in Cryospheres with a Lander for Electromagnetic Sounding (ICICLES)
使用电磁探测着陆器 (ICICLES) 研究冰冻圈感应的约束
- 批准号:
ST/Y510014/1 - 财政年份:2024
- 资助金额:
$ 34.33万 - 项目类别:
Research Grant