Collaborative Research: CAS-SC: Electrochemical Approaches to Sustainable Dinitrogen Fixation

合作研究:CAS-SC:可持续二氮固定的电化学方法

基本信息

项目摘要

With the support of the Chemical Catalysis program in the Division of Chemistry, Professors Alan Goldman of Rutgers University, Patrick Holland of Yale University, and Alexander Miller of the University of North Carolina at Chapel Hill are studying the principles of electrochemical conversion of atmospheric nitrogen (N2) to ammonia (NH3) using molecular catalysts. The research will establish a foundation for efforts to discover sustainable alternatives to replace current fossil fuel-based routes to ammonia. A low-temperature electrochemical N2 fixation process for NH3 production using only renewable energy could transform global agriculture by eliminating dependence on natural gas and decentralizing fertilizer production, thus substantially mitigating CO2 emissions. Beyond fertilizer, electrochemical N2 fixation could also enable carbon-free production of ammonia for the storage and transportation of renewably produced energy, for direct use as fuel for electric utilities or transportation or for conversion to hydrogen. Connecting the fundamental chemistry and catalysis research with possible future application is aided by collaboration with Professor Gal Hochman of Rutgers University, an agroeconomist and sustainability expert. The three research groups have established a collaborative environment ideal for training future leaders in science. In addition to research, the students and PIs are further developing the NitrogenFixers.org outreach program, which includes live in-person, virtual remote, and do-it-yourself experiments on electrochemistry and sustainable energy. It inspires middle and high school students by demonstrating the importance and excitement of chemical research, including the importance of N2 fixation and sustainability. In this collaborative project, the research groups of Professors Alan Goldman of Rutgers University, Patrick Holland of Yale University, and Alexander Miller of the University of North Carolina at Chapel Hill are working on a grand challenge in chemistry that relates to providing electrochemical alternatives to the Haber-Bosch procedure for conversion of atmospheric nitrogen (N2) to ammonia (NH3) using molecular catalysts. The guiding mechanistic hypothesis behind the research approach is that bimetallic splitting of dinitrogen to form metal nitride complexes can give high activity, high selectivity for NH3 (over H2), and low overpotential for electrochemical nitrogen reduction. The collaborative team seeks detailed mechanistic understanding of electrochemical N2 binding and splitting, and subsequent proton-coupled electron transfer (PCET) to nitride, which can be leveraged to discover new catalysts for ammonia synthesis. One highlight is the use of a parallel experimentation workflow for refinement of reaction conditions. Mechanistic studies will focus on the two key steps enabling catalysis (N2 cleavage and nitride complex reduction). Electrochemically induced N2 binding and the mechanism of formation of nitride complexes are being addressed using computational studies integrated with experimental electrochemical studies. The reduction of the nitrides in the following step is relevant to other mechanisms of N2 reduction as well, and therefore has broad relevance. Molecular electrocatalysis of N2 reduction remains far behind other reactions such as CO2 reduction and H2 evolution, but the combination of parallel electrolysis methodology and molecular-level mechanistic detail in this project promises to lead to effective electrocatalytic systems that are well-defined and amenable to continued development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学催化计划的支持下,罗格斯大学,耶鲁大学的帕特里克·霍兰德教授以及北卡罗来纳大学教堂山分校的亚历山大·米勒(Alexander Miller)研究了使用氨(N2)使用氨(NH3)的大气氮(N2)的电化学转化原理。这项研究将为发现可持续替代方案的努力奠定基础,以替代当前的化石燃料基于氨的途径。仅使用可再生能源生产NH3生产的低温电化学N2固定过程可以通过消除对天然气的依赖和分散肥料产生的依赖来改变全球农业,从而大大减轻CO2排放。除了肥料之外,电化学N2固定还可以使无碳生产氨的生产,以存储和运输重新产生的能量,直接用作电力或运输的燃料或转化为氢。与农业经济学家和可持续性专家罗格斯大学的Gal Hochman教授合作,将基本​​化学和催化研究与可能的未来应用联系起来。这三个研究小组建立了一个合作环境,非常适合培训科学领域的未来领导者。除研究外,学生和PI还进一步开发了Nitrogenfixers.org外展计划,其中包括现场实时,虚拟遥控器和自己动手做的有关电化学和可持续能源的实验。它通过证明化学研究的重要性和兴奋,包括N2固定和可持续性的重要性,从而激发了中学生和高中生。在这个合作项目中,罗格斯大学,耶鲁大学的帕特里克·霍兰德(Patrick Holland of Yale University)和北卡罗来纳大学教堂山分校的亚历山大·米勒(Alexander Miller)的研究小组正在Chapel Hill的亚历山大·米勒(Alexander Miller)致力于化学方面的巨大挑战,该挑战涉及使用Haber-Bosch的电化学替代方案,用于使用Haber-Bosch的替代方案,用于使用大气氮(N2)催化器(N2)n2)(N2)。研究方法背后的指导机理假设是,二氮形成金属氮化物配合物的双金属分裂可以给出高活性,对NH3(超过H2)的高选择性(超过H2),而对电化学氮的降低率低。协作团队寻求对电化学N2结合和分裂的详细机械理解,以及随后的质子耦合电子转移(PCET)到氮化物,可以利用这些电子(PCET)来发现氨合成的新催化剂。一个亮点是使用平行的实验工作流程来细化反应条件。机械研究将集中于实现催化的两个关键步骤(N2裂解和氮化物复合物的还原)。电化学诱导的N2结合和使用与实验电化学研究集成的计算研究正在解决氮化物复合物的形成机理。在以下步骤中,氮化物的还原也与其他减少的其他机制有关,因此具有广泛的相关性。 N2还原的分子电催化仍然远远落后于其他反应,例如二氧化碳减少和H2进化,但是该项目中并行电解方法和分子水平的机械细节的组合有望有效地导致有效的电催化系统,这些系统可导致良好的定义和持续发展,以持续发展,以反映NSF的Infortional Induntion nsf的合法宣传,并且是NSF的构建现象。更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Miller其他文献

Evidence-Based Clinical Practice Guideline: Reconstruction after Skin Cancer Resection
循证临床实践指南:皮肤癌切除后的重建
  • DOI:
    10.1097/dss.0000000000003115
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    A. Chen;J. Albertini;J. Bordeaux;Michael W. Chen;J. Cook;Caryn Davidson;Katelyn C Donnelly;I. Galaria;C. Hannan;J. Kantor;Daniel L. Kapp;N. Lawrence;C. Lober;Lauren D Loeding;Alexander Miller;D. T. Ness;R. Neves;Peter C. Revenaugh;P. Setabutr;S. Tholpady;T. Tollefson;M. V. Van Beek;P. Weiss;Murad Alam
  • 通讯作者:
    Murad Alam
Immune Deviation during the Induction of Tolerance by way of Nasal Installation.
通过鼻腔安装诱导耐受期间的免疫偏差。
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    M. E. F. Melo;T. J. Goldschmidt;V. Bhardwaj;L. Ho;Alexander Miller;Eli E. Sercarz
  • 通讯作者:
    Eli E. Sercarz
Authenticity as Wellbeing in Critical Political Science
批判政治学中的真实性作为福祉
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Miller
  • 通讯作者:
    Alexander Miller
Updates on coding in dermatology
  • DOI:
    10.1016/j.jaad.2024.03.047
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alexandra Flamm;Dirk Elston;Brent Moody;Steven Daveluy;Alina Bridges;Mollie MacCormack;Scott A.B. Collins;Mark Kaufmann;Alexander Miller;Daniel M. Siegel
  • 通讯作者:
    Daniel M. Siegel
Development of patient decision aids for the treatment of lentigo maligna and low-risk basal cell carcinoma
  • DOI:
    10.1016/j.jaad.2022.05.030
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Britney N. Wilson;Rohan Shah;Shenara Musthaq;Toral Vaidya;Thomas Bander;Hillary D. Johnson;Ian A. Maher;Christian L. Baum;Todd V. Cartee;Jonathan Cook;Terrence Cronin;Seemal R. Desai;Catherine C. DiGiorgio;Hayley Goldbach;Glenn Goldman;Shayna Gordon;Ann Haas;Nita Kohli;Geoffrey Lim;Alexander Miller
  • 通讯作者:
    Alexander Miller

Alexander Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Miller', 18)}}的其他基金

Collaborative Research: NSF-DFG: CAS: Electrochemical Hydrogenation of Amides and Esters
合作研究:NSF-DFG:CAS:酰胺和酯的电化学氢化
  • 批准号:
    2140205
  • 财政年份:
    2022
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Cation-Controlled Catalysis with Pincer-Crown Ether Complexes
钳冠醚配合物的阳离子控制催化
  • 批准号:
    2102244
  • 财政年份:
    2021
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:CAS:可持续二氮固定的电化学方法
  • 批准号:
    1954942
  • 财政年份:
    2020
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Collaborative Research: INFEWS N/P/H2O: Electrochemical Approaches to Sustainable Dinitrogen Fixation
合作研究:INFEWS N/P/H2O:可持续二氮固定的电化学方法
  • 批准号:
    1665135
  • 财政年份:
    2017
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
CAREER: Dynamic Hemilability Controlled by Cation-Responsive Pincer-crown Ether Catalysts
事业:由阳离子响应钳冠醚催化剂控制的动态半稳定性
  • 批准号:
    1553802
  • 财政年份:
    2016
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Continuing Grant
Carbon Dioxide and Intermediary Metabolism of Developing Brain
二氧化碳和大脑发育的中间代谢
  • 批准号:
    8040286
  • 财政年份:
    1980
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Mobilities of Polymer Liquids
聚合物液体的流动性
  • 批准号:
    7821958
  • 财政年份:
    1979
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Carbon Dioxide and Intermediary Metabolism of Developing Brain
二氧化碳和大脑发育的中间代谢
  • 批准号:
    7805161
  • 财政年份:
    1978
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Continuing Grant
Mobilities of Polymer Liquids
聚合物液体的流动性
  • 批准号:
    7620090
  • 财政年份:
    1977
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant

相似国自然基金

III-E型CRISPR-Cas系统的结构生物学及其应用研究
  • 批准号:
    32371276
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
兼容等温扩增的双CRISPR/Cas12方法体系构建及其多重精准监测肉及肉制品食用安全的应用研究
  • 批准号:
    82373629
  • 批准年份:
    2023
  • 资助金额:
    47 万元
  • 项目类别:
    面上项目
基于内源CRISPR/Cas与模块化报告系统的多杀菌素调控机制与高产策略研究
  • 批准号:
    32370064
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于CRISPR/Cas9文库筛选的STK19增强舌鳞癌顺铂敏感性的机制研究
  • 批准号:
    82360568
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于磁性CRISPR/Cas13a-SERS生物传感的诺如病毒高敏即时检测及机理研究
  • 批准号:
    32302218
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347912
  • 财政年份:
    2024
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
CAS: Collaborative Research: Ambient Polyvinyl Chloride (PVC) Upgrading Using Earth-Abundant Molecular Electrocatalysts
CAS:合作研究:使用地球上丰富的分子电催化剂升级常温聚氯乙烯 (PVC)
  • 批准号:
    2347913
  • 财政年份:
    2024
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Linking Activities, Expenditures and Energy Use into an Integrated Systems Model to Understand and Predict Energy Futures
合作研究:CAS-气候:将活动、支出和能源使用连接到集成系统模型中,以了解和预测能源未来
  • 批准号:
    2243099
  • 财政年份:
    2023
  • 资助金额:
    $ 28.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了