MRI: Acquisition of a Dual Transmission X-ray Diffractometer (DTXRD) for Studying the Local and Bulk Structure of Soft and Hard Materials under In situ and Operando Conditions

MRI:购买双透射 X 射线衍射仪 (DTXRD),用于研究原位和操作条件下软质和硬质材料的局部和整体结构

基本信息

  • 批准号:
    2216231
  • 负责人:
  • 金额:
    $ 55.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This Major Research Instrumentation (MRI) award supports the acquisition of a dual transmission X-ray diffractometer (DTXRD) that allows researchers to study how materials form, how their atoms are arranged, and how they can be manipulated and engineered. The arrangement of these sub-nanometer ( 1 billionth of a meter) building blocks determines the materials properties and behavior in varying environments. Consequentially, understanding their structure is a powerful tool for materials discovery and design to unlock next-generation batteries, sensors, magnets, electronics, catalysts, polymers, and quantum materials. The instrument benefits researchers across a wide range of disciplines (chemistry, biochemistry, earth/planetary and materials science, physics, mechanical, chemical, and electrical engineering) at Arizona State University (ASU). The DTXRD further enables fundamental insights into how the local and long-range arrangement of atoms evolve in response to external parameters (different temperatures, gas, electrical/electrochemical fields) and reveals synthetic formation mechanisms of novel materials. Hence, the instrument allows for crucial materials research that is key for innovation and leads to future technology development. This has an impact not only across multiple disciplines but also transcending further to US-wide academic institutions, including universities with limited research opportunities for students, and industrial partners. The DTXRD provides a unique and powerful learning experience for students through hands-on training and research activities, as well as online courses on crystallography and materials synthesis, creating a workforce that enriches many different industrial sectors ranging from energy and information technology to packaging and waste management. Additionally, public outreach in the form of workshops, lectures, and accessible social media content promote the broad area of materials science and facilitate science communication and networking. The DTXRD combines two independent and simultaneously operable systems to enable: (i) X-ray diffraction measurements with copper (Cu) or molybdenum (Mo) radiation in transmission geometry (maximizing data quality, especially for layered and 2D materials) that can be performed in capillaries (ideal for air-sensitive compounds) and in an automated way (up to 30 samples), and (ii) Total scattering experiments and pair distribution function analysis using high energy (silver (Ag) radiation) for local structure information of crystalline as well as low- and non-crystalline species, including a reaction chamber and variable temperature capabilities (40 - 1,800 K and gas atmosphere). The high energy radiation also enables operando transmission diffraction measurements of electrochemical devices with coin and pouch cell holders. The DTXRD is used for research projects in three general areas: (1) Understanding the local structure and developing new synthetic reaction pathways for layered, low crystalline, non-crystalline or amorphous, and low-dimensional materials; (2) Mechanistic understanding of materials for renewable energy/catalysis applications; (3) Discovery of new quantum phases in quantum sciences and engineering. The overarching goal within these broad research fields is to develop a deep understanding of the structure of diverse species (ranging from solid-state battery and magnetic materials to minerals and organics/polymers), their formation mechanisms, and their behavior in response to external stimuli (including their potential degradation and failure). This knowledge is crucial for the understanding and design of next generation materials for electrochemical energy, semiconductor, catalysis, and quantum computing applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项重大研究仪器 (MRI) 奖项支持购买双透射 X 射线衍射仪 (DTXRD),使研究人员能够研究材料如何形成、原子如何排列以及如何操纵和设计它们。这些亚纳米(十亿分之一米)构建块的排列决定了材料在不同环境中的特性和行为。因此,了解它们的结构是材料发现和设计的强大工具,可解锁下一代电池、传感器、磁铁、电子产品、催化剂、聚合物和量子材料。该仪器使亚利桑那州立大学 (ASU) 多个学科(化学、生物化学、地球/行星和材料科学、物理、机械、化学和电气工程)的研究人员受益。 DTXRD 进一步深入了解原子的局部和远程排列如何响应外部参数(不同温度、气体、电/电化学场)而演化,并揭示新型材料的合成形成机制。因此,该仪器可以进行关键材料研究,这对于创新和引领未来技术发展至关重要。这不仅对多个学科产生影响,而且还进一步超越了美国范围内的学术机构,包括为学生和工业合作伙伴提供有限研究机会的大学。 DTXRD 通过实践培训和研究活动以及晶体学和材料合成在线课程,为学生提供独特而强大的学习体验,培养一支丰富的劳动力队伍,丰富从能源和信息技术到包装和废物处理等许多不同的工业领域管理。此外,以研讨会、讲座和可访问的社交媒体内容形式进行的公共宣传促进了材料科学的广泛领域,并促进了科学传播和网络。 DTXRD 结合了两个独立且可同时操作的系统,以实现:(i) 可在透射几何结构中使用铜 (Cu) 或钼 (Mo) 辐射进行 X 射线衍射测量(最大限度地提高数据质量,特别是对于层状和 2D 材料)毛细管中(空气敏感化合物的理想选择)并以自动化方式(最多 30 个样品),以及 (ii) 使用高能(银 (Ag) 辐射)进行总散射实验和对分布函数分析,以获取局部结构信息结晶以及低结晶和非结晶物质,包括反应室和可变温度功能(40 - 1,800 K 和气体气氛)。高能辐射还可以对带有纽扣和软包电池座的电化学装置进行原位透射衍射测量。 DTXRD 用于三个一般领域的研究项目:(1)了解层状、低结晶、非晶或非晶以及低维材料的局部结构并开发新的合成反应途径; (2) 可再生能源/催化应用材料的机理理解; (3)量子科学与工程中新量子相的发现。这些广泛研究领域的首要目标是深入了解不同物种的结构(从固态电池和磁性材料到矿物质和有机物/聚合物)、它们的形成机制以及它们对外部刺激的响应行为(包括它们潜在的退化和故障)。这些知识对于理解和设计用于电化学能源、半导体、催化和量子计算应用的下一代材料至关重要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christina Birkel其他文献

Christina Birkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christina Birkel', 18)}}的其他基金

Collaborative Research: Conference: MateriAlZ Winter School 2024
合作研究:会议:MateriAlZ 冬季学校 2024
  • 批准号:
    2402925
  • 财政年份:
    2024
  • 资助金额:
    $ 55.78万
  • 项目类别:
    Standard Grant
CAREER: Fundamentals and synthesis of new compositions and shapes/microstructures of 3D and 2D carbides, nitrides and carbonitrides (MAX phases and MXenes)
职业:3D 和 2D 碳化物、氮化物和碳氮化物(MAX 相和 MXene)的新成分和形状/微观结构的基础知识和合成
  • 批准号:
    2143982
  • 财政年份:
    2022
  • 资助金额:
    $ 55.78万
  • 项目类别:
    Continuing Grant

相似国自然基金

高磁感取向硅钢表面氧化层内传质与获得抑制剂演变机理研究
  • 批准号:
    52374316
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
  • 批准号:
    32371616
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
脚手架蛋白RanBP9通过调控细胞周期停滞和获得SASP介导应激性衰老促进AKI向CKD转化的作用及机制
  • 批准号:
    82300777
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
SIRT3-SOD2-mtROS信号轴调控骨骼肌自噬在脓毒症相关获得性肌无力中的作用及机制研究
  • 批准号:
    82360382
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
KRAS(G12D)抑制剂在胰腺癌中获得性耐药的机制研究
  • 批准号:
    82373331
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Dual-Venc 5D flow for Assessment of Congenital Heart Disease in Pediatrics
Dual-Venc 5D 流程用于评估儿科先天性心脏病
  • 批准号:
    10679809
  • 财政年份:
    2023
  • 资助金额:
    $ 55.78万
  • 项目类别:
MRI: Acquisition of a dual-acquisition high-density EEG with transcranial electrical neuromodulation for psychophysiological research.
MRI:通过经颅电神经调节采集双采集高密度脑电图,用于心理生理学研究。
  • 批准号:
    2320091
  • 财政年份:
    2023
  • 资助金额:
    $ 55.78万
  • 项目类别:
    Standard Grant
MRI Track 1: Acquisition of a Dual-Reagent Chemical Ion Mass Spectrometer for Direct and Detailed Measurements of Atmospheric Chemical Fluxes
MRI 轨道 1:获取双试剂化学离子质谱仪,用于直接详细测量大气化学通量
  • 批准号:
    2320421
  • 财政年份:
    2023
  • 资助金额:
    $ 55.78万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Dual-Source Single-Crystal X-ray Diffractometer.
MRI:购买双源单晶 X 射线衍射仪。
  • 批准号:
    2214606
  • 财政年份:
    2022
  • 资助金额:
    $ 55.78万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Brilliance Dual-Source X-ray Diffractometer for Advanced Materials Research, Education, and Training in Western New York
MRI:采购一台高亮度双源 X 射线衍射仪,用于纽约西部的先进材料研究、教育和培训
  • 批准号:
    2216151
  • 财政年份:
    2022
  • 资助金额:
    $ 55.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了