CAS: Reaction and Deactivation Implications of Pore structure, Nodal Identity, and Coordination Environment on Small-molecule Oxidations by Metal-organic Frameworks
CAS:孔结构、节点特性和配位环境对金属有机框架小分子氧化的反应和失活影响
基本信息
- 批准号:2246949
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Michele L. Sarazen of Princeton University is studying selective oxidation reactions that are central in a variety of pharmaceutical, fine chemical, and other chemical industry processes. Specifically, this work is directed at the design of advanced catalysts with high reactivity, selectivity, and stability that can efficiently and sustainably address our growing energy and product demands through combined synthesis, characterization, and reaction analysis. Metal-organic frameworks (MOFs) are a class of materials attractive for many chemistries, including oxidations. This proposal aims to provide understanding of how MOFs behave under model operating conditions, their deactivation pathways, and their reactivation. If successful, the results of these studies will help guide further research, not only in catalysis but also for other applications such as gas capture and separations, energy storage, drug delivery, and sensors. Additional implications for commercial sustainability from understanding material limitations can improve existing materials in terms of thermochemical robustness and stability, and reducing waste from spent catalysts. Similarly, this work prioritizes sustainable practices by considering cheaper and more abundant metals and more benign oxidants compared to many current industrial processes. PI Sarazen will continue her engagement in scientific outreach and educational programs that aim to increase diversity within the scientific community through demonstrations in on-/off-campus outreach events that utilize these catalysts in the oxidation of dye molecules found in wastewater, offering exciting, vibrant color changes that can be used to promote the power of catalyst applications and public scientific literacy on sustainable industrial chemistry. This project involves the study of liquid-phase oxidation reactions valuable for industrial applications through experimental and computational characterizations. The regularly distributed metal centers in open crystalline MOF networks will be used to build structure-function relations and elucidate reaction and deactivation mechanisms during representative oxidation reactions of 1-octene, where rigorous kinetic experiments will be coupled with characterization techniques and computational modelling. Specifically, this proposed work will investigate physicochemically tunable Fe-based MIL MOFs during hydrogen peroxide-assisted oxidation of conformationally and synthetically modular 1-octene to quantify the impacts of pore hydrophobicity, acidity, and Fe active site coordination sphere perturbations on observed reactivity, selectivity, and stability. The results of this experimental study will motivate computational investigations with density functional theory by taking advantage of the crystalline nature of MOFs and could develop trends that predict promising material compositions or methods to improve existing materials for a desired application. The framework described here for studying entire catalytic lifecycles, including specific mechanistic details for oxidation reactions on Fe-carboxylate MOFs, has the potential to provide a foundation that can be extended to improve catalyst efficiency for other reactions of various feedstocks related to hydrocarbon and oxygenate processing from carbon upgrading (petroleum/biomass/waste refining) over different MOF architectures and even different energy (i.e., electrocatalytic, photocatalytic) inputs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学催化计划的支持下,普林斯顿大学的Michele L. Sarazen正在研究选择性氧化反应,这些反应在各种药物,细化学和其他化学工业过程中至关重要。具体而言,这项工作针对具有高反应性,选择性和稳定性的高级催化剂设计,可以通过合成,表征和反应分析有效,可持续地解决我们不断增长的能量和产品需求。金属有机框架(MOF)是一类对许多化学物质(包括氧化)吸引的材料。该建议旨在提供对MOF在模型工作条件下的行为,停用途径及其重新激活的理解。如果成功的话,这些研究的结果将有助于指导进一步的研究,不仅在催化中,而且在其他应用中,例如气体捕获和分离,能源存储,药物输送和传感器。从理解材料限制中对商业可持续性产生的其他影响可以改善现有的材料,从热化学鲁棒性和稳定性方面,减少消费催化剂的废物。同样,与许多当前工业过程相比,这项工作通过考虑更便宜,更丰富的金属和更多良性氧化剂来优先考虑可持续实践。 Pi Sarazen将继续参与科学外展和教育计划,旨在通过在/户外/校外外展活动中的演示来增加科学界的多样性,这些活动利用这些催化剂在废水中发现的染料分子氧化中,可以使用令人兴奋的,充满活力的颜色变化,从而促进企业型和公共科学的能力,并具有可持续的型级别的实践和公共级别的能力。该项目涉及通过实验和计算特征对工业应用有价值的液相氧化反应的研究。开放晶体MOF网络中的定期分布的金属中心将用于建立结构功能关系,并在1-辛酸的代表性氧化反应期间阐明反应和失活机制,在其中,严格的动力学实验将与特性技术和计算建模相结合。具体而言,这项拟议的工作将研究物理化学上可调的Fe基MIL MOF,在过氧化氢辅助的构型和合成模块化模块化1-辛酸的氧化过程中,以量化孔疏水性,酸性和Fe活性位点配置球的影响,并选择对相关性,选择性,选择性,和稳定性。这项实验研究的结果将通过利用MOF的晶体性质来激发使用密度功能理论的计算研究,并可以发展趋势,以预测有希望的材料组成或方法,以改善现有材料以进行所需的应用。此处描述的用于研究整个催化生命周期的框架,包括针对铁羧酸含量MOF的氧化反应的特定机理细节,具有提供基础的潜力,可以扩展基础,以提高与碳氢化合物和氧气相关的各种原料反应的催化剂效率(碳碳和氧气升高)(cody contractive contracting contraction/coldgraction contranding contranding contraction/cop)。 (即,电催化,光催化)输入。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准的评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Sarazen其他文献
Michele Sarazen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Sarazen', 18)}}的其他基金
CAREER: Engineering Circular Hydrocarbon Reactions in Zeolite-based Catalysts
职业:在沸石基催化剂中设计循环碳氢化合物反应
- 批准号:
2338497 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EFRI DCheM: Engineering Interfaces between Plasma, Catalysts, and Reactor Design for Natural Gas Conversion to Liquid Products
EFRI DCheM:等离子体、催化剂和反应器设计之间的工程接口,用于将天然气转化为液体产品
- 批准号:
2029425 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
深层碳酸盐岩酸蚀裂缝中反应-非线性两相流界面演化机制研究
- 批准号:52304047
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CD40hiCD138hiPIR-Ahi巨噬细胞训练免疫的形成及其促进慢性排斥反应的机制研究
- 批准号:82371794
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非均质玄武岩中二氧化碳快速矿化反应运移机理研究
- 批准号:42307271
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational studies of Arp2/3 activation and deactivation
Arp2/3 激活和失活的计算研究
- 批准号:
9093581 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Computational studies of Arp2/3 activation and deactivation
Arp2/3 激活和失活的计算研究
- 批准号:
9274331 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Computational studies of Arp2/3 activation and deactivation
Arp2/3 激活和失活的计算研究
- 批准号:
8833797 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
An in situ Opioid Drug Deactivation Kit for Home Use
家用阿片类药物原位灭活套件
- 批准号:
8751075 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
An Intervention to Improve ICD Deactivation Conversations
改善 ICD 停用对话的干预措施
- 批准号:
8606489 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别: