CAS: Reaction and Deactivation Implications of Pore structure, Nodal Identity, and Coordination Environment on Small-molecule Oxidations by Metal-organic Frameworks
CAS:孔结构、节点特性和配位环境对金属有机框架小分子氧化的反应和失活影响
基本信息
- 批准号:2246949
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis program in the Division of Chemistry, Michele L. Sarazen of Princeton University is studying selective oxidation reactions that are central in a variety of pharmaceutical, fine chemical, and other chemical industry processes. Specifically, this work is directed at the design of advanced catalysts with high reactivity, selectivity, and stability that can efficiently and sustainably address our growing energy and product demands through combined synthesis, characterization, and reaction analysis. Metal-organic frameworks (MOFs) are a class of materials attractive for many chemistries, including oxidations. This proposal aims to provide understanding of how MOFs behave under model operating conditions, their deactivation pathways, and their reactivation. If successful, the results of these studies will help guide further research, not only in catalysis but also for other applications such as gas capture and separations, energy storage, drug delivery, and sensors. Additional implications for commercial sustainability from understanding material limitations can improve existing materials in terms of thermochemical robustness and stability, and reducing waste from spent catalysts. Similarly, this work prioritizes sustainable practices by considering cheaper and more abundant metals and more benign oxidants compared to many current industrial processes. PI Sarazen will continue her engagement in scientific outreach and educational programs that aim to increase diversity within the scientific community through demonstrations in on-/off-campus outreach events that utilize these catalysts in the oxidation of dye molecules found in wastewater, offering exciting, vibrant color changes that can be used to promote the power of catalyst applications and public scientific literacy on sustainable industrial chemistry. This project involves the study of liquid-phase oxidation reactions valuable for industrial applications through experimental and computational characterizations. The regularly distributed metal centers in open crystalline MOF networks will be used to build structure-function relations and elucidate reaction and deactivation mechanisms during representative oxidation reactions of 1-octene, where rigorous kinetic experiments will be coupled with characterization techniques and computational modelling. Specifically, this proposed work will investigate physicochemically tunable Fe-based MIL MOFs during hydrogen peroxide-assisted oxidation of conformationally and synthetically modular 1-octene to quantify the impacts of pore hydrophobicity, acidity, and Fe active site coordination sphere perturbations on observed reactivity, selectivity, and stability. The results of this experimental study will motivate computational investigations with density functional theory by taking advantage of the crystalline nature of MOFs and could develop trends that predict promising material compositions or methods to improve existing materials for a desired application. The framework described here for studying entire catalytic lifecycles, including specific mechanistic details for oxidation reactions on Fe-carboxylate MOFs, has the potential to provide a foundation that can be extended to improve catalyst efficiency for other reactions of various feedstocks related to hydrocarbon and oxygenate processing from carbon upgrading (petroleum/biomass/waste refining) over different MOF architectures and even different energy (i.e., electrocatalytic, photocatalytic) inputs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学催化项目的支持下,普林斯顿大学的 Michele L. Sarazen 正在研究在各种制药、精细化工和其他化学工业过程中至关重要的选择性氧化反应。具体来说,这项工作旨在设计具有高反应活性、选择性和稳定性的先进催化剂,通过组合合成、表征和反应分析,能够有效、可持续地满足我们不断增长的能源和产品需求。金属有机骨架(MOF)是一类对许多化学(包括氧化)具有吸引力的材料。该提案旨在帮助人们了解 MOF 在模型操作条件下的行为、其失活途径和重新激活。如果成功,这些研究的结果将有助于指导进一步的研究,不仅在催化方面,而且还适用于气体捕获和分离、能量存储、药物输送和传感器等其他应用。了解材料限制对商业可持续性的其他影响可以改善现有材料的热化学稳健性和稳定性,并减少废催化剂的浪费。同样,这项工作优先考虑可持续实践,考虑与许多当前的工业流程相比更便宜、更丰富的金属和更良性的氧化剂。 PI Sarazen 将继续参与科学推广和教育项目,旨在通过校内/校外推广活动的演示来增加科学界的多样性,这些活动利用这些催化剂氧化废水中发现的染料分子,提供令人兴奋、充满活力的成果颜色变化可用于促进催化剂应用的力量和公众对可持续工业化学的科学素养。该项目涉及通过实验和计算表征对工业应用有价值的液相氧化反应的研究。开放晶体 MOF 网络中规则分布的金属中心将用于建立结构-功能关系,并阐明 1-辛烯代表性氧化反应期间的反应和失活机制,其中严格的动力学实验将与表征技术和计算建模相结合。具体来说,这项工作将研究在过氧化氢辅助氧化构象和合成模块化1-辛烯过程中物理化学可调节的铁基MIL MOF,以量化孔疏水性、酸性和铁活性位点配位球扰动对观察到的反应性、选择性的影响和稳定性。这项实验研究的结果将通过利用 MOF 的结晶性质,激发密度泛函理论的计算研究,并可能发展预测有前途的材料成分或改进现有材料以实现所需应用的方法的趋势。这里描述的用于研究整个催化生命周期的框架,包括铁羧酸盐 MOF 上氧化反应的具体机制细节,有可能提供一个基础,可以扩展以提高与碳氢化合物和含氧化合物加工相关的各种原料的其他反应的催化剂效率从碳升级(石油/生物质/废物精炼)到不同的 MOF 架构,甚至不同的能源(即电催化、光催化)输入。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优点和更广泛的影响审查标准进行评估来获得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Sarazen其他文献
Michele Sarazen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michele Sarazen', 18)}}的其他基金
CAREER: Engineering Circular Hydrocarbon Reactions in Zeolite-based Catalysts
职业:在沸石基催化剂中设计循环碳氢化合物反应
- 批准号:
2338497 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
EFRI DCheM: Engineering Interfaces between Plasma, Catalysts, and Reactor Design for Natural Gas Conversion to Liquid Products
EFRI DCheM:等离子体、催化剂和反应器设计之间的工程接口,用于将天然气转化为液体产品
- 批准号:
2029425 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
催化烯烃直接硝化的P450过氧化物酶的分子设计与反应机制研究
- 批准号:22307125
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RcBBXs和RcPIFs协同调控月季遮荫反应的分子机制
- 批准号:32372744
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
极端海洋动力环境下饱和珊瑚砂的不排水反应特性及液化评价方法
- 批准号:52378346
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
α-Fe2O3光电极温度依赖的载流子传输与表面反应动力学研究
- 批准号:22309080
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
益气活血方启动免疫级联反应促进破裂型腰椎间盘突出后重吸收的机制
- 批准号:82374220
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Computational studies of Arp2/3 activation and deactivation
Arp2/3 激活和失活的计算研究
- 批准号:
9093581 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Computational studies of Arp2/3 activation and deactivation
Arp2/3 激活和失活的计算研究
- 批准号:
9274331 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Computational studies of Arp2/3 activation and deactivation
Arp2/3 激活和失活的计算研究
- 批准号:
8833797 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
An in situ Opioid Drug Deactivation Kit for Home Use
家用阿片类药物原位灭活套件
- 批准号:
8751075 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
An Intervention to Improve ICD Deactivation Conversations
改善 ICD 停用对话的干预措施
- 批准号:
8606489 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别: