RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
基本信息
- 批准号:2246811
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-15 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to integrate semantic knowledge from large language models into automated decision-making and control systems while retaining reliability and robustness. The main principle of the proposed approach is to use language models to generate proposals and guidance, but still make the final decision or plan based on principled and robust planning and control methods, such that the language models are used when their semantic predictions are useful but not relied upon to always yield the correct answer. Large language models, such as ChatGPT, have garnered considerable attention in recent years due to their ability to respond to complex user queries and fulfill elaborate requests, such as writing code, composing stories, or providing educational explanations. Because of this, there is considerable interest in using them directly as decision-making systems (for example, if a language model can give “how to” instructions for repairing a car, perhaps it can also issue commands to a robot that actually repairs a car). However, there are also numerous concerns that such models might be too unreliable or too prone to generate false predictions to be useful as decision-making systems on their own. Therefore, this project aims to integrate these models into principled methods for planning and control to leverage the semantic knowledge in these models while providing a degree of robustness. This research has significant ramifications for automated decision-making systems that need to interact with complex real-world environments, where both semantic reasoning and intelligent planning are important. This includes robotic systems, including autonomous vehicles and service robots, intelligent assistants, decision support systems, and a range of automation technologies.The technical approach in this project will be based around a probabilistic formulation that ties together the ungrounded semantic predictions from language models with grounded but non-semantic predictions from learned dynamics models. In this way, probabilistic inference machinery can be used to derive algorithms that make decisions that have a high likelihood of being semantically good according to the language model and a high likelihood of being physically (dynamically) optimal according to the learned dynamics model. In practice, this principle can be instantiated in the context of both model-based and model-free reinforcement-learning systems, learned prediction systems, and planning algorithms (by formulating planning as inference). The project will explore applications of this concept to prediction, planning and control, and exploration in reinforcement learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在将大型模型的语义整合到自动化的决策和控制系统中,同时保留了鲁棒性和鲁棒性。有原则性和健壮的计划和控制方法,当时使用这种语言模型,但由于其能够组合用户查询和履行诸如编写代码,编写故事L的能力,因此无法始终产生正确的答案。因此。因此汽车)众多的担忧,即这种模型可能会引起虚假的预测,因此可以在这些模型中计划和控制语义知识。制造需要复杂的现实环境的系统很重要。从学习动力学模型中的语言模型中进行语义预测,可以将NCE机械的模型从原则上可以根据学习的动力学模型来得出算法。在基于模型的和无模型的增强系统,学习的预测系统和计划算法的背景下进行实例化(通过将计划作为推理提出)。奖项使用Toundation的Revader对W标准的Revader take Recteriation进行了Suthy评估的NSF'Sf'Stututory。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Levine其他文献
Goal-oriented Vision-and-Dialog Navigation through Reinforcement Learning
通过强化学习实现目标导向的视觉和对话导航
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Peter Anderson;Qi Wu;Damien Teney;Jake Bruce;Mark Johnson;Niko Sünderhauf;Ian D. Reid;F. Bonin;Alberto Ortiz;Angel X. Chang;Angela Dai;T. Funkhouser;Ma;Matthias Niebner;M. Savva;David Chen;Raymond Mooney. 2011;Learning;Howard Chen;Alane Suhr;Dipendra Kumar Misra;T. Kollar;Nicholas Roy;Trajectory;Satwik Kottur;José M. F. Moura;Dhruv Devi Parikh;Sergey Levine;Chelsea Finn;Trevor Darrell;Jianfeng Li;Gao Yun;Chen;Ziming Li;Sungjin Lee;Baolin Peng;Jinchao Li;Julia Kiseleva;M. D. Rijke;Shahin Shayandeh;Weixin Liang;Youzhi Tian;Cheng;Yitao Liang;Marlos C. Machado;Erik Talvitie;Chih;Jiasen Lu;Zuxuan Wu;G. Al - 通讯作者:
G. Al
Is Value Learning Really the Main Bottleneck in Offline RL?
价值学习真的是离线强化学习的主要瓶颈吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Seohong Park;Kevin Frans;Sergey Levine;Aviral Kumar - 通讯作者:
Aviral Kumar
Grow Your Limits: Continuous Improvement with Real-World RL for Robotic Locomotion
拓展你的极限:通过现实世界的强化学习来持续改进机器人运动
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Laura M. Smith;Yunhao Cao;Sergey Levine - 通讯作者:
Sergey Levine
Functional Graphical Models: Structure Enables Offline Data-Driven Optimization
功能图形模型:结构支持离线数据驱动优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
J. Kuba;Masatoshi Uehara;Pieter Abbeel;Sergey Levine - 通讯作者:
Sergey Levine
REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous Manipulation
REBOOT:重用数据引导高效的现实世界灵巧操作
- DOI:
10.48550/arxiv.2309.03322 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zheyuan Hu;Aaron Rovinsky;Jianlan Luo;Vikash Kumar;Abhishek Gupta;Sergey Levine - 通讯作者:
Sergey Levine
Sergey Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Levine', 18)}}的其他基金
Robotic Learning with Reusable Datasets
使用可重复使用的数据集进行机器人学习
- 批准号:
2150826 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Deep Robotic Learning with Large Datasets: Toward Simple and Reliable Lifelong Learning Frameworks
职业:大数据集的深度机器人学习:迈向简单可靠的终身学习框架
- 批准号:
1651843 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1637443 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1700697 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
- 批准号:
1614653 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1700696 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
基于Rab8A介导的小胶质细胞铁稳态及神经炎症调控探讨灵芝提取物改善LRRK2-G2019S突变介导的帕金森病的机制
- 批准号:82305015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
卫星重力提取中-小尺度陆地水变化的先验信息约束与联合反演研究
- 批准号:
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
卫星重力提取中-小尺度陆地水变化的先验信息约束与联合反演研究
- 批准号:42274110
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
小域上保密信息提取的方案构造问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全蝎提取物BmP02通过调控小胶质细胞钾通道Kv1.3抗癫痫发生的分子机制
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
III: Small: Accessible and Interpretable Machine Reading Methods for Extracting Structured Information from Text
III:小:从文本中提取结构化信息的可访问且可解释的机器阅读方法
- 批准号:
2006583 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
RI: Small: Extracting and Representing Commonsense Knowledge Using Language Models
RI:小:使用语言模型提取和表示常识知识
- 批准号:
2006851 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Extracting Dynamics from Limited Data for Modeling and Control of Unmanned Autonomous Systems
RI:小型:协作研究:从有限数据中提取动力学,用于无人自主系统的建模和控制
- 批准号:
1910308 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
RI: Small: Collaborative Research: Extracting Dynamics from Limited Data for Modeling and Control of Unmanned Autonomous Systems
RI:小型:协作研究:从有限数据中提取动力学,用于无人自主系统的建模和控制
- 批准号:
1910087 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CHS: Small: Extracting affect and interaction information from primary care visits to support patient-provider interactions
CHS:小型:从初级保健就诊中提取情感和互动信息,以支持患者与提供者之间的互动
- 批准号:
1816010 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant