Robotic Learning with Reusable Datasets

使用可重复使用的数据集进行机器人学习

基本信息

  • 批准号:
    2150826
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

One of the major challenges in modern robotics is making robots capable of performing a broad range of tasks in open-world environments, such as homes, offices, hospitals, and construction sites. Such sites are characterized by being very different from each other and include events that are unknown ahead of time. Machine learning has emerged as one of the most effective approaches to allow such broad generalization, particularly in areas that require human like sensing, such as the visual sense. However, effective applications of machine learning to robotics suffer from a major problem: they require collecting large enough observations (referred as to datasets) to enable such broad generalization. While widely reused and shared datasets have enabled broad generalization in areas, such as computer-based vision recognition, this data reuse is difficult in robotics. In this project, the investigators’ goal is to develop methods and techniques that can make it possible to utilize large reusable datasets for robotic learning, such that the same data can be reused repeatedly for a wide range of tasks and domains (with some modest amount of domain-specific collection in each case), while enabling broad generalization. The focus will be on methods for directly learning new skills for robots from the visual observations, using both human-provided data and collected data by the robot itself. The investigators will aim to both develop such algorithms and to collect and disseminate suitable datasets that other researchers can reuse. If successful, this project may lead both to new methods for controlling robots in diverse real-world settings, and tools and resources that can further facilitate future research on robotic learning, making it accessible to scientists and engineers that may not have the capability to collect large datasets on their own.Enabling robotic learning with reusable data requires resolving several important questions: How do people develop robotic learning techniques that can reuse such data? How can people gather the kinds of datasets that can be used for multiple robots, applications, and environments? Answering these questions will require new algorithmic tools for robotic learning, new data collection methodologies, and of course collecting the datasets themselves. The investigators’ technical approach will be focused around two key thrusts. Thrust 1 will be concerned with algorithms development for data reuse, which itself will be divided into two parts: the first part, focuses on imitation learning, and the second part, focuses on reinforcement learning. In Thrust 2, the objective is to collect large and reusable datasets that can be effectively utilized by the broad robotics research community. The first part of Thrust 2 will focus around the development of open-source tools for high-volume data collection. The second part will focus on collecting and disseminating the datasets themselves.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代机器人技术的主要挑战之一是使机器人能够在开放世界环境中执行广泛的任务,例如家庭、办公室、医院和建筑工地,这些场所的特点是彼此非常不同,包括。机器学习已经成为实现这种广泛概括的最有效方法之一,特别是在需要类似人类感知的领域,例如视觉。然而,机器学习在机器人技术中的有效应用却受到了影响。来自一个主要问题:他们需要收集足够大的观察结果(称为数据集)以实现如此广泛的泛化虽然广泛重用和共享的数据集已经在基于计算机的视觉识别等领域实现了广泛的泛化,但在该项目中,这种数据重用是困难的,研究人员的目标是。开发可以利用大型可重用数据集进行机器人学习的方法和技术,以便可以在广泛的任务和领域中重复重用相同的数据(在每种情况下都有一定数量的特定于领域的集合) ,同时启用广泛的重点将是利用人类提供的数据和机器人本身收集的数据,从视觉观察中直接学习机器人新技能的方法。研究人员的目标是开发此类算法并收集和传播合适的数据集。如果成功,该项目可能会带来在不同的现实环境中控制机器人的新方法,以及可以进一步促进未来机器人学习研究的工具和资源,使科学家和工程师能够使用这些工具和资源。没有能力收集大型数据集利用可重复使用的数据实现机器人学习需要解决几个重要问题:人们如何开发可以重复使用此类数据的机器人学习技术?人们如何收集可用于多个机器人、应用程序和环境的数据集?回答这些问题将需要用于机器人学习的新算法工具、新的数据收集方法,当然,研究人员的技术方法将集中在两个关键点上:数据重用的开发算法。哪个Thrust 2 本身将分为两个部分:第一部分专注于模仿学习,第二部分专注于强化学习。在 Thrust 2 中,目标是收集可被广泛的机器人研究有效利用的大型且可重复使用的数据集。 Thrust 2 的第一部分将重点关注开发用于大量数据收集的开源工具,第二部分将重点关注数据集本身的收集和传播。该项目得到了跨部门基础研究的支持。机器人项目,由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sergey Levine其他文献

Goal-oriented Vision-and-Dialog Navigation through Reinforcement Learning
通过强化学习实现目标导向的视觉和对话导航
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Anderson;Qi Wu;Damien Teney;Jake Bruce;Mark Johnson;Niko Sünderhauf;Ian D. Reid;F. Bonin;Alberto Ortiz;Angel X. Chang;Angela Dai;T. Funkhouser;Ma;Matthias Niebner;M. Savva;David Chen;Raymond Mooney. 2011;Learning;Howard Chen;Alane Suhr;Dipendra Kumar Misra;T. Kollar;Nicholas Roy;Trajectory;Satwik Kottur;José M. F. Moura;Dhruv Devi Parikh;Sergey Levine;Chelsea Finn;Trevor Darrell;Jianfeng Li;Gao Yun;Chen;Ziming Li;Sungjin Lee;Baolin Peng;Jinchao Li;Julia Kiseleva;M. D. Rijke;Shahin Shayandeh;Weixin Liang;Youzhi Tian;Cheng;Yitao Liang;Marlos C. Machado;Erik Talvitie;Chih;Jiasen Lu;Zuxuan Wu;G. Al
  • 通讯作者:
    G. Al
Is Value Learning Really the Main Bottleneck in Offline RL?
价值学习真的是离线强化学习的主要瓶颈吗?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seohong Park;Kevin Frans;Sergey Levine;Aviral Kumar
  • 通讯作者:
    Aviral Kumar
Grow Your Limits: Continuous Improvement with Real-World RL for Robotic Locomotion
拓展你的极限:通过现实世界的强化学习来持续改进机器人运动
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Laura M. Smith;Yunhao Cao;Sergey Levine
  • 通讯作者:
    Sergey Levine
Functional Graphical Models: Structure Enables Offline Data-Driven Optimization
功能图形模型:结构支持离线数据驱动优化
REBOOT: Reuse Data for Bootstrapping Efficient Real-World Dexterous Manipulation
REBOOT:重用数据引导高效的现实世界灵巧操作
  • DOI:
    10.48550/arxiv.2309.03322
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zheyuan Hu;Aaron Rovinsky;Jianlan Luo;Vikash Kumar;Abhishek Gupta;Sergey Levine
  • 通讯作者:
    Sergey Levine

Sergey Levine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sergey Levine', 18)}}的其他基金

RI: Small: Extracting Knowledge from Language Models for Decision Making
RI:小型:从语言模型中提取知识以进行决策
  • 批准号:
    2246811
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Deep Robotic Learning with Large Datasets: Toward Simple and Reliable Lifelong Learning Frameworks
职业:大数据集的深度机器人学习:迈向简单可靠的终身学习框架
  • 批准号:
    1651843
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1637443
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
  • 批准号:
    1700697
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RI: Small: Model-Based Deep Reinforcement Learning for Domain Transfer
RI:小型:用于域迁移的基于模型的深度强化学习
  • 批准号:
    1614653
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
  • 批准号:
    1700696
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于渐进式稀疏建模与深度学习的激光吸收光谱层析成像
  • 批准号:
    62371415
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
  • 批准号:
    42375193
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
​基于自监督学习的医学图像质量迁移反问题理论
  • 批准号:
    12301546
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于共识主动性学习的城市电动汽车充电、行驶行为与交通网—配电网协同控制策略研究
  • 批准号:
    62363022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于脑电信号多域特征和深度学习的驾驶行为识别研究
  • 批准号:
    62366028
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CDS&E: A Machine Learning Architecture for General, Reusable Models for Guest-Host Chemical Bonding
CDS
  • 批准号:
    2154952
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FAIR DOs: Findable, Accessible, Interoperable, Reusable Development of Open Simulation
FAIR DO:可查找、可访问、可互操作、可重用的开放模拟开发
  • 批准号:
    10707353
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
  • 批准号:
    10642888
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
TRiPOD: Toward Reusable Phenotypes in Observational Data for AD/ADRD - managing definitions and correcting bias
TRiPOD:在 AD/ADRD 观察数据中实现可重复使用的表型 - 管理定义和纠正偏差
  • 批准号:
    10279554
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Collaborative Research: Recurring Patterns in Molecular Science: Reusable Learning Resources
协作研究:分子科学中的重复模式:可重复使用的学习资源
  • 批准号:
    0817493
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了