CRII: SaTC: Local Differential Privacy under Correlation
CRII:SaTC:相关下的本地差分隐私
基本信息
- 批准号:2245689
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As data has become the fuel that drives business growth, an increasing number of service providers collect large volumes of data from users to gain insights for better business decision-making. Such data may contain or reveal sensitive personal information, and disclosing such information raises significant privacy concerns among the general public. Various Local Differential Private (LDP) data analysis techniques have been proposed to allow a data collector to gain helpful information from the data while ensuring users' privacy. Still, these methods exhibit an inherent trade-off between individual data privacy and data utility, i.e., strong data privacy for individual data contributors comes at the cost of reduced data utility for the data collector, which has been hindering their broad adoption. This project's novelties lie in exploiting the correlation that commonly exists in multi-attribute data, e.g., a person's age and salary, and new correlated random perturbation techniques to develop effective LDP techniques with much-improved privacy and utility tradeoff. The project's broader significance and importance include new tools for service providers to improve how they collect and utilize user data to drive their business decisions and growth while ensuring strong privacy guarantees to individual users as well as privacy-preserving data analysis techniques in various web, mobile, and IoT-based applications and services. This project develops novel LDP techniques to significantly improve the privacy and utility tradeoff by exploiting the correlation in multi-attribute data and the correlation that can be introduced into different users' random perturbations. The project will: (1) develop novel LDP techniques for correlated multi-attribute data via sequential random perturbation for improving data utility without sacrificing privacy guarantee, and (2) design novel LDP techniques with improved privacy and utility tradeoffs by exploiting correlated random perturbation among randomly formed groups of data contributors. The findings from this project will enrich the scientific knowledge of privacy-preserving data analysis and privacy-enhancing technologies. Insights gained from and outputs of the project will be made publicly shared through online tutorials, talks, publications, and software toolkits. The project will integrate research outputs in curriculum development, and will contribute broadly through undergraduate and graduate mentoring, and outreach to K-12 and underrepresented students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数据已成为推动业务增长的燃料,越来越多的服务提供商从用户那里收集了大量数据,以获得洞察力,以获得更好的业务决策。 这些数据可能包含或揭示敏感的个人信息,并披露此类信息引起了公众的严重隐私问题。已经提出了各种本地差异私人(LDP)数据分析技术,以允许数据收集器从数据中获取有用的信息,同时确保用户的隐私。尽管如此,这些方法仍然在单个数据隐私和数据实用程序之间表现出固有的权衡,即单个数据贡献者的强大数据隐私是以减少数据收集器数据实用程序为代价的,这一直在阻碍其广泛的采用。该项目的新颖性在于利用通常存在于多属性数据中的相关性,例如,一个人的年龄和工资以及新的相关随机扰动技术来开发有效的LDP技术,并具有较大的隐私和公用事业交易。该项目的更广泛的意义和重要性包括服务提供商的新工具,以改善其收集和利用用户数据来推动其业务决策和增长的方式,同时确保在各种网络,移动和基于IoT的应用程序和服务的应用程序和服务中确保对个人用户的强大隐私保证以及具有隐私性的数据分析技术。该项目开发了新颖的新墨西哥低点技术,可以通过利用多属性数据中的相关性以及可以引入不同用户的随机扰动中的相关性来显着提高隐私和公用事业权衡。该项目将:(1)通过顺序的随机扰动开发新型的LDP技术,以改善数据实用性而不必牺牲隐私保证,以及(2)设计新颖的LDP技术,通过利用随机形成的数据贡献者的随机随机驱动来利用相关的随机驱动。该项目的发现将丰富保护隐私数据分析和增强隐私技术的科学知识。 从在线教程,演讲,出版物和软件工具包中,从项目中获得的见解和产出将公开共享。该项目将在课程开发中整合研究成果,并将通过本科和研究生指导为广泛的贡献,并向K-12和代表性不足的学生提供宣传。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的审查审查的审查标准来通过评估来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yidan Hu其他文献
Electrochemically active biofilm-enabled biosensors: Current status and opportunities for biofilm engineering
电化学活性生物膜生物传感器:生物膜工程的现状和机遇
- DOI:
10.1016/j.electacta.2022.140917 - 发表时间:
2022-07 - 期刊:
- 影响因子:6.6
- 作者:
Yidan Hu;Xi Han;Liang Shi;Bin Cao - 通讯作者:
Bin Cao
Mountain Top Algorithm: Complex Historical-Geographic Network Data Analysis based on Structure, Dynamics, and Function
山顶算法:基于结构、动力学和函数的复杂历史地理网络数据分析
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ziyang Weng;Yidan Hu;Shuhao Wang;Wenhui Wang;Yuhao Liu - 通讯作者:
Yuhao Liu
Analysis on the Distribution of Critical Current Density in a Single ReBCO Annular Plates
单块ReBCO环形板的临界电流密度分布分析
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Yidan Hu;Yinshun Wang - 通讯作者:
Yinshun Wang
Tepidibacillus marianensis sp. nov., a novel heterotrophic iron-reducing bacterium isolated from Mariana Trench sediment.
玛丽亚温带芽孢杆菌 (Tepidibacillus marianensis)
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Shuyi Li;Chenxi Li;Jiahao Pei;Rulong Liu;Jiasong Fang;Yuli Wei;Yu He;Shuzhen Li;Qi Feng;Chenxi Zhang;Tianci Guo;Yongguang Jiang;Yidan Hu;Zhou Jiang;Liang Shi;Yiran Dong - 通讯作者:
Yiran Dong
Research of ICRH Based on Simulation With VSim Programming
基于VSim编程仿真的ICRH研究
- DOI:
10.1109/tasc.2019.2891966 - 发表时间:
2019 - 期刊:
- 影响因子:1.8
- 作者:
Menghan Wang;Yinshun Wang;Qiuliang Wang;Chunyan Li;Xing Li;Mingchuang Liu;Yidan Hu;Hao Chen;C. Peng - 通讯作者:
C. Peng
Yidan Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yidan Hu', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2023 Privacy Enhancing Technologies Symposium (PETS)
旅行:2023 年隐私增强技术研讨会 (PETS) 的 NSF 学生旅行补助金
- 批准号:
2330965 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
- 批准号:
2348147 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
- 批准号:
2348181 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant