Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
基本信息
- 批准号:2245153
- 负责人:
- 金额:$ 28.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Radiofrequency cardiac ablation therapy – the use of heat delivered to destroy abnormal heart tissue that causes rhythm disorders (performed using catheters inserted into veins or arteries) - provides an effective and, compared to heart surgery, a less invasive treatment option. Unfortunately, as many as 50% of ablation patients experience the return of disease due to incomplete tissue ablation. Successful treatment requires continuous ablation lines that induce permanent thermal damage to the tissue, achieved by sufficient exposure of the tissue to high enough temperatures to ensure cell death. The investigative team’s expertise in heat transfer theory, image computing and visualization, biomedical modeling and simulation, and experimental validation will be leveraged to better understand the physiological mechanisms that govern the transfer of heat into biological tissues by modeling and quantifying tissue responses to thermal energy. This research will help characterize the thermal injury delivered to the heart tissue during therapy, and will, therefore, have the potential to evolve into a future tool to better guide and monitor cardiac ablation therapy. This project also features a synergistically integrated education and outreach program that will foster research opportunities for graduate and undergraduate students in computer science, biomedical engineering, mathematics, and imaging science at Rochester Institute of Technology and the University of Kansas. The team will also develop innovative hands-on workshops to inspire and educate K-12 students from underrepresented groups on biomedical computing and medicine. Successful treatment of cardiac arrhythmia via ablation therapy requires the delivery of continuous ablation patterns that induce permanent thermal damage to the tissue, achieved by sufficient exposure to cell death temperatures and above. However, temperature readings inside the beating heart are invasive and infeasible. Hence, intrinsic knowledge of the heat transfer mechanisms and their effects on the tissue (e.g., temperature distribution, lesion geometry, quantification of induced thermal damage) is critical to understanding tissue response to thermal energy. Moreover, to enable intra-operative thermal monitoring, rapid, interactive characterization and visualization of the thermal lesions is equally critical. To better understand the physiological mechanisms that govern heat transfer into biological tissues, this project will capitalize on the investigating team’s cross-disciplinary expertise spanning fundamental heat transfer theory, image computing and visualization, biomedical modeling and simulation, scientific computing, and experimental validation to develop an intelligent computational framework to model and quantify tissue response to thermal energy. To rapidly characterize and visualize the ablation lesions, the team will research computationally-efficient thermal damage reversibility metrics operating in concert with voxel-derived, high-order meshing methods, which allow for rapid quantification of tissue temperature and lesion characterization. Previously developed numerical verification techniques will be utilized to assess the performance of the developed ablation modeling framework. Lastly, this project will also leverage the team’s expertise in building experimental test beds featuring in vitro constructs and ex vivo tissue samples to compare model-predictions and experimental lesions using infrared imaging, temperature measurements, and tissue staining. The developed framework will be released to the scientific computing community for research and educational use.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
射频心脏消融疗法——利用热量来破坏导致节律紊乱的异常心脏组织(使用插入静脉或动脉的导管进行)——提供了一种有效的治疗方案,与心脏手术相比,这是一种侵入性较小的治疗选择。 50% 的消融患者由于组织消融不完全而导致疾病复发,成功的治疗需要连续的消融线,从而对组织造成永久性热损伤,这是通过将组织充分暴露在足够高的温度下以确保细胞死亡来实现的。研究团队将利用传热理论、图像计算和可视化、生物医学建模和模拟以及实验验证方面的专业知识,通过建模和量化组织对热能的反应,更好地了解控制热量传递到生物组织的生理机制。将有助于表征治疗期间传递到心脏组织的热损伤,因此有可能发展成为未来的工具,以更好地指导和监测心脏消融治疗。该项目还具有协同整合的教育和项目推广。促进研究机会该团队还将为罗彻斯特理工学院和堪萨斯大学的计算机科学、生物医学工程、数学和成像科学专业的研究生和本科生举办创新的实践研讨会,以激励和教育来自代表性不足群体的 K-12 学生。通过消融疗法成功治疗心律失常需要提供连续的消融模式,通过充分暴露于细胞死亡温度及以上来实现对组织的永久性热损伤。然而,跳动的心脏内的温度读数是侵入性的。因此,热传递机制及其对组织的影响(例如温度分布、病变几何形状、引起的热损伤的量化)的内在知识对于理解组织对热能的反应至关重要。热监测、热损伤的快速、交互式表征和可视化同样重要,为了更好地了解控制热传递到生物组织的生理机制,该项目将利用研究团队涵盖基本热传递理论、图像的跨学科专业知识。计算和可视化、生物医学建模和模拟、科学计算和实验验证,以开发智能计算框架来建模和量化组织对热能的反应,为了快速表征和可视化消融病变,该团队将研究与计算有效的热损伤可逆性指标。体素衍生的高阶网格划分方法,可以快速量化组织温度和病变特征,将用于评估所开发的消融建模框架的性能。专业知识建立具有体外构造和离体组织样本的实验测试台,以使用红外成像、温度测量和组织染色来比较模型预测和实验损伤。开发的框架将发布给科学计算界用于研究和教育用途。授予 NSF 的法定使命,并通过评估反映使用基金会的智力优点和更广泛的影响审查标准,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suzanne Shontz其他文献
A linear weighted laplacian smoothing framework for warping tetrahedral meshes
用于扭曲四面体网格的线性加权拉普拉斯平滑框架
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Suzanne Shontz;S. Vavasis - 通讯作者:
S. Vavasis
Parallel Boundary Element Solutions of Block Circulant Linear Systems for Acoustic Radiation Problems With Rotationally Symmetric Boundary Surfaces
旋转对称边界面声辐射问题分块循环线性系统的并联边界元解
- DOI:
10.1115/ncad2012-0445 - 发表时间:
2012 - 期刊:
- 影响因子:1.1
- 作者:
Kenneth Czuprynski;J. B. Fahnline;Suzanne Shontz - 通讯作者:
Suzanne Shontz
Proceedings of the 19th International Meshing Roundtable
第十九届国际网格圆桌会议论文集
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Suzanne Shontz - 通讯作者:
Suzanne Shontz
An Alternating Mesh Quality Metric Scheme for Efficient Mesh Quality Improvement
用于有效提高网格质量的交替网格质量度量方案
- DOI:
10.1016/j.procs.2011.04.031 - 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
Jeonghyung Park;Suzanne Shontz - 通讯作者:
Suzanne Shontz
Nonlinear Dimension Reduction for Microarray DataSmall and Large p)
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Suzanne Shontz - 通讯作者:
Suzanne Shontz
Suzanne Shontz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suzanne Shontz', 18)}}的其他基金
CDS&E: Collaborative Research: A Computational Framework for Reconstructing and Visualizing Myocardial Active Stresses
CDS
- 批准号:
1808553 - 财政年份:2018
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
NSF Student and Postdoc Travel Grant for the 2017 International Meshing Roundtable (2017 IMR)
2017 年国际网格圆桌会议 (2017 IMR) 的 NSF 学生和博士后旅行补助金
- 批准号:
1746066 - 财政年份:2017
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
AF: Small: Collaborative Research: A Robust Framework for Overcoming the Tangled Mesh Problem
AF:小型:协作研究:克服网格缠结问题的稳健框架
- 批准号:
1717894 - 财政年份:2017
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
CAREER: Parallel Dynamic Meshing Techniques for Simulation-Assisted Medical Interventions
职业:用于模拟辅助医疗干预的并行动态网格技术
- 批准号:
1500487 - 财政年份:2014
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
Participant Support for the 2014 NSF CyberBridges Workshop
2014 年 NSF CyberBridges 研讨会的参与者支持
- 批准号:
1430620 - 财政年份:2014
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
CAREER: Parallel Dynamic Meshing Techniques for Simulation-Assisted Medical Interventions
职业:用于模拟辅助医疗干预的并行动态网格技术
- 批准号:
1330056 - 财政年份:2012
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
CAREER: Parallel Dynamic Meshing Techniques for Simulation-Assisted Medical Interventions
职业:用于模拟辅助医疗干预的并行动态网格技术
- 批准号:
1054459 - 财政年份:2011
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
Participant Support for the 19th International Meshing Roundtable
第十九届国际网格圆桌会议参与者支持
- 批准号:
1039545 - 财政年份:2010
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
- 批准号:
2420358 - 财政年份:2024
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
- 批准号:
2245298 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
- 批准号:
2302618 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
- 批准号:
2244952 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: A Symbolic Artificial Intelligence Framework for Discovering Physically Interpretable Constitutive Laws of Soft Functional Composites
CDS
- 批准号:
2244953 - 财政年份:2023
- 资助金额:
$ 28.37万 - 项目类别:
Standard Grant