Collaborative Research: EPCN: Distributed Optimization-based Control of Large-Scale Nonlinear Systems with Uncertainties and Application to Robotic Networks

合作研究:EPCN:基于分布式优化的大型不确定性非线性系统控制及其在机器人网络中的应用

基本信息

  • 批准号:
    2210320
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Control and optimization need to be conducted simultaneously in numerous applications: smart grids, transportation networks, cooperative robotics, healthcare, and other autonomous systems interacting via wireless or physically-linked communications. These two tasks are typically treated distinctly, approached by independent designs. As a result, the two tasks interfere with one another and require performance compromises in at least of the two. For instance, optimality is obtained, but slowly, or convergence is rapid, but to suboptimal motions. A deep integration of control and optimization holds great promise. The integration is made difficult by the surge in complexity of contemporary control systems, reflected in the dynamic order, model uncertainty, and unreliable networking. The key challenge for concurrently running the mutually interfering optimization and control is the stability of the overall system or, if stability is ensured, the convergence rate. The control-optimization interference has been the hallmark of both classical adaptive control (controller-estimator interference) and extremum seeking (optimizer-controller interference), which are special cases of concurrent control and optimization. This project will advance the mathematical foundations of distributed optimization-based control and develop new tools and methods for real-time distributed optimization-based control design of large-scale and nonlinear uncertain systems. The methodology will be validated by means of cooperative robotic networks.The tools developed in this project, for real-time distributed optimization-based control algorithms for large-scale nonlinear systems with uncertainties, are of transformative nature. The algorithms designed will be applicable to heretofore intractable large-scale systems, including uncertain networked nonlinear systems and robotic networks described by Euler-Lagrange equations. To de-conflict the entanglement of optimization and control, the PIs pursue three research tasks: (1) the synthesis of distributed optimization algorithms that are robust to uncertainties, (2) the design of tracking controllers for each local system to follow in real time the desired output that aims to globally minimize certain global cost, and (3) the integration of optimization and control algorithms for global convergence of optimization algorithms and stability of the closed-loop network. The project builds on the PIs’ foundational contributions in nonlinear small-gain theory, fortified uncertainty-attenuating controllers and estimators for modular adaptive control design, and on their complementary skillsets in learning-based control and in real-time optimization by extremum seeking. The deliverable is a controller-optimizer co-design with a greatly enlarged applicability, in terms of the generality of the nonlinear plants and the achieved robustness and adaptivity, as compared to current methods which rely on linearly-bounded interactions among the modules.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
控制和优化需要在许多应用中同时进行:智能电网、交通网络、协作机器人、医疗保健和其他通过无线或物理连接通信进行交互的自主系统,这两项任务通常通过独立设计来区别对待。结果,这两个任务相互干扰,并且需要在至少两个任务中进行性能妥协,例如,获得最优性,但速度缓慢,或者收敛速度很快,但对于次优运动来说,控制和优化的深度集成非常重要。整合是。当代控制系统的复杂性激增,体现在动态顺序、模型不确定性和不可靠的网络上,这使得并行运行相互干扰的优化和控制的关键挑战是整个系统的稳定性,或者是否确保稳定性。 ,收敛速度。控制优化干扰一直是经典自适应控制(控制器估计器干扰)和极值搜索(优化器控制器干扰)的标志,它们是并发控制和优化的特殊情况。推进基于分布式优化的控制的数学基础,并开发用于大规模非线性不确定系统的基于分布式优化的实时控制设计的新工具和方法。该方法将通过协作机器人网络进行验证。所开发的工具。在这个项目中,针对具有不确定性的大规模非线性系统的基于实时分布式优化的控制算法,所设计的将适用于迄今为止难以处理的大规模系统,包括不确定的网络化非线性算法系统和机器人网络。经过为了消除优化和控制之间的冲突,PI 致力于三个研究任务:(1) 综合对不确定性具有鲁棒性的分布式优化算法,(2) 为每个局部系统设计跟踪控制器。实时跟踪期望的输出,旨在全局最小化某些全局成本;(3)优化和控制算法的集成,以实现优化算法的全局收敛和闭环网络的稳定性。 PI 在非线性小增益理论、用于模块化自适应控制设计的强化不确定性衰减控制器和估计器以及基于学习的控制和极值搜索优化器协同设计的实时优化方面的互补技能方面做出了基础贡献。与依赖于非线性对象之间线性有界相互作用的当前方法相比,在非线性对象的通用性以及所实现的鲁棒性和适应性方面,大大扩大了适用性该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhong-Ping Jiang其他文献

Multiattention Generative Adversarial Network for Remote Sensing Image Super-Resolution
用于遥感图像超分辨率的多注意生成对抗网络
Nonlinear Control Tools for Fused Magnesium Furnaces: Design and Implementation
电熔镁炉非线性控制工具:设计与实现
  • DOI:
    10.1109/tie.2017.2767545
  • 发表时间:
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Zhiwei. Wu;Tengfei. Liu;Zhong-Ping Jiang;Tianyou. Chai;Lina. Zhang
  • 通讯作者:
    Lina. Zhang
Distributed Global Output-Feedback Control for a Class of Euler–Lagrange Systems
一类欧拉-拉格朗日系统的分布式全局输出反馈控制
  • DOI:
    10.1109/tac.2017.2696705
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Qingkai Yang;Hao Fang;Jie Chen;Zhong-Ping Jiang;Ming Cao
  • 通讯作者:
    Ming Cao
Event-triggered stabilization of a class of nonlinear time-delay systems
一类非线性时滞系统的事件触发镇定
Hierarchical fusion of optical and dual-polarized SAR on impervious surface mapping at city scale
光学和双偏振 SAR 的分层融合在城市尺度不透水表面测绘上的应用

Zhong-Ping Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhong-Ping Jiang', 18)}}的其他基金

Collaborative Research: CPS: Small: An Integrated Reactive and Proactive Adversarial Learning for Cyber-Physical-Human Systems
协作研究:CPS:小型:网络-物理-人类系统的集成反应式和主动式对抗学习
  • 批准号:
    2227153
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Designs and Theory for Event-Triggered Control with Marine Robotic Applications
合作研究:海洋机器人应用事件触发控制的设计和理论
  • 批准号:
    2009644
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Learning-based Adaptive Optimal Control Principles for Human Movements
基于学习的人体运动自适应最优控制原理
  • 批准号:
    1903781
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Biologically-Inspired Robust Adaptive Dynamic Programming for Continuous-Time Stochastic Systems
连续时间随机系统的受生物学启发的鲁棒自适应动态规划
  • 批准号:
    1501044
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid Small-Gain Theorems for Nonlinear Networked and Quantized Control Systems
合作研究:非线性网络和量化控制系统的混合小增益定理
  • 批准号:
    1230040
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AIS: Entanglement of Approximate Dynamic Programming and Modern Nonlinear Control for Complex Systems
AIS:复杂系统的近似动态规划与现代非线性控制的纠缠
  • 批准号:
    1101401
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: New Tools for Nonlinear Control Systems Analysis and Synthesis
合作研究:非线性控制系统分析与综合的新工具
  • 批准号:
    0906659
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Nonlinear Ship Control: An Opportunity for Applied Mathematicians
非线性船舶控制:应用数学家的机会
  • 批准号:
    0504462
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research: Control of complex nonlinear systems with applications
中美合作研究:复杂非线性系统控制及其应用
  • 批准号:
    0408925
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Robust Nonlinear Control: Problems and Challenges from Communication Networks
职业:鲁棒非线性控制:通信网络的问题和挑战
  • 批准号:
    0093176
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
  • 批准号:
    82301258
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
  • 批准号:
    82373325
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
  • 批准号:
    82301216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
  • 批准号:
    82301257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
  • 批准号:
    52371115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
  • 批准号:
    DE240100161
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Early Career Researcher Award
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
Opening Spaces and Places for the Inclusion of Indigenous Knowledge, Voice and Identity: Moving Indigenous People out of the Margins
为包容土著知识、声音和身份提供开放的空间和场所:使土著人民走出边缘
  • 批准号:
    477924
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Salary Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了