GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects

GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件

基本信息

  • 批准号:
    2240352
  • 负责人:
  • 金额:
    $ 40.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Large-scale parallel optical interconnects hold the key to resolving the grand challenge of enormous bandwidth requirement between on-chip cores and within multi-chip modules. Silicon photonics, which is the mostly available integrated photonic platform, must excel in energy efficiency and bandwidth density in order to meet the stringent requirement of future extreme-scale photonic interconnects. The goal of this GOALI proposal is to develop hybrid silicon-transparent conductive oxide (Si-TCO) devices, especially microring resonators including microdisks, with unprecedented electro-optic (E-O) tunability and energy efficiency for large-scale on-chip wavelength division multiplexing (WDM) optical interconnects. The proposed research is highly interdisciplinary and will impact academia, industry, and photonics community by proving a unique path to integrate highly efficient TCO materials with silicon photonics. If successful, this GOALI project will lay a solid foundation toward developing a new type of silicon photonic devices for future extreme-scale on-chip WDM optical communication. The education and outreach activities will benefit graduate, undergraduate and K-12 students, and broaden the participation of under-represented minorities and women students at OSU. This research will also promote industrial collaboration with Hewlett Packard Enterprise and AIM Photonics, and broaden the research experiences of students in science and engineering at Oregon State University (OSU).Technical: TCO materials have attracted escalating research interests in integrated photonic devices, metamaterials and metasurfaces in recent years due to the extraordinary refractive index tuning achieved either through oxygen vacancy doping or electrical gating. In addition, TCO materials can be deposited with high quality using DC- or RF-sputtering on various platforms, which also possess long-term stability. Therefore, TCO materials are fully compatible with silicon photonics and has the potential to be readily integrated with existing silicon photonic integrated circuits (PICs). This GOALI project will focus on the development of metal-oxide-semiconductor (MOS) capacitor-driven active silicon-TCO photonic devices as well as exploring the feasibility of scalable integration with existing silicon photonic platforms. The main objectives of this research include: 1) demonstrating hybrid Si-TCO micro-ring filters with extremely large E-O tuning efficiency to compensate fabrication errors and temperature variation without any thermal heater; 2) implementing an athermal on-chip 4-channel WDM transmitter module using dual-functional microring resonators, which can simultaneously function as wavelength tunable filters and high speed E-O modulators; and 3) verifying process compatibility and hybrid integration with silicon photonics for future scalable manufacturing using AIM Photonics foundry service. We expect that the electrically tunable silicon microring resonators with near-zero wavelength tuning power will replace the power-hungry thermal heaters that have been used for decades. Most importantly, we will prove that such scalable MOS-driven photonic devices can be fabricated by combining AIM Photonics passive silicon-on-insulator multi-project wafer (SOI-MPW) runs and in-house TCO processes at OSU.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模的平行光学互连是解决片内芯和多芯片模块内巨大带宽要求的巨大挑战的关键。硅光子学是主要可用的集成光子平台,必须在能效和带宽密度方面表现出色,以满足未来极端尺度光子互连的严格要求。该目标提案的目的是开发混合硅 - 透明导电氧化物(SI-TCO)设备,尤其是包括微电击在内的微孔谐振器,具有前所未有的电型(E-O)可调性和能源效率,用于大规模上板层次波长的多重多重型多路复用(wdm)sptical Interlical Internconconconconconconconconconconnects。拟议的研究是高度跨学科的,将通过证明将高效的TCO材料与硅光子学结合的独特途径来影响学术,行业和光子学界。如果成功的话,这个守门员项目将为开发一种新型的硅光子设备奠定坚实的基础,以实现未来的极端片段WDM光学通信。教育和外展活动将使研究生,本科和K-12学生受益,并扩大代表性不足的少数民族和女性学生在OSU的参与。这项研究还将在俄勒冈州立大学(OSU)的科学和工程学学生的研究经验。技术:TCO材料在最近几年通过纳入的光子设备,超级式和变形的电源来吸引了研究兴趣,从而在俄勒冈州立大学(OSU)上扩大了科学和工程学学生的研究经验。门控。此外,可以使用DC-或RF启用在各种平台上以高质量的方式沉积TCO材料,这也具有长期的稳定性。 因此,TCO材料与硅光子学完全兼容,并且有可能与现有的硅光子集成电路(图片)易于整合。该守门员项目将重点介绍金属氧化物 - 氧化电导器(MOS)电容器驱动的主动硅-TCO光子设备,并探索与现有硅光子平台可扩展集成的可行性。这项研究的主要目标包括:1)证明具有极大的E-O调音效率的混合Si-TCO微环滤波器,以补偿制造误差和温度变化而没有任何热加热器; 2)使用双功能微孔谐振器实现Athermal On-Chip 4通道WDM发射机模块,该模块可以同时用作波长可调滤波器和高速E-O调制器; 3)使用AIM Photonics Foundry Service验证过程兼容性和与硅光子的混合整合,以实现未来的可伸缩制造。 我们预计具有接近零波长调谐功率的电气可调式硅微孔谐振器将取代数十年来使用的急性热加热器。最重要的是,我们将证明可以通过将AIM Photonics被动式硅在绝缘子中硅和内部的TCO流程结合使用AIM Photonics被动硅在原始硅中,并在OSU上进行的TCO流程来制造这种可扩展的光子设备。该奖项颁发了NSF的法定任务,并通过评估依据,该奖项被视为众所周知的依据。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Gate-Tuning Silicon Microring Resonator Filters for On- chip Wavelength Division Multiplexing
用于片上波分复用的栅极调谐硅微环谐振滤波器
  • DOI:
    10.1364/cleo_si.2023.sm4p.5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hsu, Wei-Che;Nujhat, Nabila;Kupp, Benjamin;Conley, John F.;Wang, Alan X.
  • 通讯作者:
    Wang, Alan X.
Integrated Photonics using Transparent Conductive Oxides
使用透明导电氧化物的集成光子学
  • DOI:
    10.1364/cleo_si.2023.sf1p.1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang, Alan X.
  • 通讯作者:
    Wang, Alan X.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alan Wang其他文献

MP81-07 PENILE CARCINOMA: GENETICALLY ENGINEERED MODELS FOR NOVEL THERAPEUTICS IDENTIFICATION
  • DOI:
    10.1016/j.juro.2017.02.2533
  • 发表时间:
    2017-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmed Sarhan;Xiaoying Shang;Pherose Tamboli;Priya Rao;Curtis Pettaway;Alan Wang;Ronald DePinho;Xin Lu
  • 通讯作者:
    Xin Lu
Ultrafast Structured Light Architectures from THz to X-rays
从太赫兹到 X 射线的超快结构光架构
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Carbajo;Tiffany Chang;Rares Fota;A. Gilevich;A. Hart;J. Hirschman;Alain Lacunza Huerta;R. Lemons;Zairui Li;Brittany Lu;Wesley Sims;Linshan Sun;Ravi Varma;Alan Wang;Hong;Hao Zhang
  • 通讯作者:
    Hao Zhang
Measuring Success, One Sensor at a Time: A Sensing Infrastructure for Longitudinal Workspace Behavior Monitoring
一次使用一个传感器衡量成功:用于纵向工作空间行为监控的传感基础设施
Effectiveness of an Advanced Practice Model of Care on Post-Acute Outcomes in a Transitional Care Unit
  • DOI:
    10.1016/j.jamda.2016.12.056
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lynn Freeman;Lynn Freeman;Natalie Leland;Alan Wang
  • 通讯作者:
    Alan Wang
Combining advanced magnetic resonance imaging (MRI) with finite element (FE) analysis for characterising subject-specific injury patterns in the brain after traumatic brain injury
将先进的磁共振成像 (MRI) 与有限元 (FE) 分析相结合,用于表征创伤性脑损伤后大脑中特定受试者的损伤模式
  • DOI:
    10.1007/s00366-022-01697-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.7
  • 作者:
    Vickie B. Shim;M. Tayebi;Eryn Kwon;S. Guild;Miriam Scadeng;D. Dubowitz;F. McBryde;S. Rosset;Alan Wang;Justin W. Fernandez;Shaofan Li;S. Holdsworth
  • 通讯作者:
    S. Holdsworth

Alan Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alan Wang', 18)}}的其他基金

GOALI: Hybrid Silicon-Transparent Conductive Oxide Devices for Large-Scale On-chip Wavelength Division Multiplexing Optical Interconnects
GOALI:用于大规模片上波分复用光学互连的混合硅-透明导电氧化物器件
  • 批准号:
    1927271
  • 财政年份:
    2019
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
Photonic Nose: Toward System-On-Chip Optical Gas and Odor Sensing
光子鼻:迈向片上系统光学气体和气味传感
  • 批准号:
    1707506
  • 财政年份:
    2017
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
BRIGE: Surface-Normal Plasmonic Modulator for Three-Dimensional Board-to-Board and Chip-to-Chip Optical Interconnects
BRIGE:用于三维板对板和芯片对芯片光学互连的表面法线等离子体调制器
  • 批准号:
    1342318
  • 财政年份:
    2013
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
STTR Phase II: Fully Embedded Optical Interconnects based on Optical Bus Architecture for Large Size Printed Circuit Boards
STTR第二阶段:基于大尺寸印刷电路板光总线架构的全嵌入式光互连
  • 批准号:
    0724096
  • 财政年份:
    2007
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant

相似国自然基金

在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
  • 批准号:
    32171982
  • 批准年份:
    2021
  • 资助金额:
    59.00 万元
  • 项目类别:
    面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
  • 批准号:
    32172113
  • 批准年份:
    2021
  • 资助金额:
    58.00 万元
  • 项目类别:
    面上项目
在油菜中发展基因组选择技术助力新型种质资源库优良株系的鉴定和杂交种测配
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目
亲本自交系对玉米杂交种抗旱能力的影响及机理解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于全长转录组研究“西盘鲍”杂交种阶段性抗病菌杂种优势的机制
  • 批准号:
    31902369
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Tri-Cure Hybrid Organo-Silicon Coatings for Surface Preservation
I-Corps:用于表面保护的 Tri-Cure 混合有机硅涂料
  • 批准号:
    2327701
  • 财政年份:
    2023
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Standard Grant
New Hybrid Silicon Reduction Process Using Hydrogen Radicals for Decarbonization
使用氢自由基脱碳的新型混合硅还原工艺
  • 批准号:
    23H01736
  • 财政年份:
    2023
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multimodal hybrid nanoparticles for the treatment of triple-negative breast cancer
多模式混合纳米粒子用于治疗三阴性乳腺癌
  • 批准号:
    10514997
  • 财政年份:
    2022
  • 资助金额:
    $ 40.59万
  • 项目类别:
Hybrid Graphene/Superconducting Optoelectronics on Silicon Photonic Crystals
硅光子晶体上的混合石墨烯/超导光电子学
  • 批准号:
    RGPIN-2017-04187
  • 财政年份:
    2021
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Discovery Grants Program - Individual
Development of hybrid system of double-sided- and tandem- interferometer for precise measurement of refractive index and its temperature dependence of silicon
开发双面和串联干涉仪混合系统,用于精确测量硅的折射率及其温度依赖性
  • 批准号:
    21K20421
  • 财政年份:
    2021
  • 资助金额:
    $ 40.59万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了