CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development

职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来

基本信息

  • 批准号:
    2240155
  • 负责人:
  • 金额:
    $ 60.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

This research will advance our understanding of the mechanism that governs the emergence of complex biological networks. It proposes novel approaches for combining laboratory experiments and multiscale mathematical modeling to characterize branching morphogenesis in the mammary gland. Branching morphogenesis is a process by which the female mammary gland develops its tree-like structure during puberty. It governs the formation of other tree-like organs such as the lungs, salivary gland, and kidney. Defects in branching morphogenesis can lead to hypertension, chronic kidney failure, and poor lung function. Mechanisms that control branching morphogenesis are circumvented or altered during the development and progression of breast cancer. Understanding the mechanisms that generate branched organs may identify novel ways to treat breast cancer, regenerate organ function, or design artificial organs to combat diseases. At puberty, branching morphogenesis generates an extensive network of mammary gland epithelium ducts. The epithelium ductal network is connected at its base to the nipple and plays a key role in milk synthesis and secretion for neonates. Molecular and mechanical factors in the tissue environment are important for normal branching morphogenesis. Majority of the research in this area has focused on identifying key molecular factors and the mechanisms by which they regulate branching morphogenesis. How mechanical signaling regulates branching morphogenesis remains largely unknown. The mathematical models proposed in this research will contribute to bridging this gap. This project will build novel multiscale mathematical models to predict how the interactions between mechanical and cellular signaling regulate the formation of the mammary ductal network. Branching morphogenesis occurs through two stages: the first stage is via successive rounds of elongation and splitting of the tip of individual ducts (i.e., tip bifurcation) and the second stage is via budding along the sides of existing ducts (i.e., side branching). Increased extracellular matrix (ECM) stiffness is known to increase the sites for epithelium ductal branch initiation. However, how the mechanical signaling originating from the ECM affects branch elongation, tip bifurcation and side branching is not fully understood. This project will (1) combine optimal transport theory, agent-based models, and data from laboratory experiments to predict how interactions between ECM and epithelium cells regulate ductal branch elongation and tip bifurcation in the mammary gland, (2) apply topological data analysis and multifractal analysis to predict the role of tensional force and ECM stiffness on ductal tip bifurcation and side branching in the mammary gland. Findings from this research will improve our understanding of how biomechanical forces affect ductal network formation. This CAREER project will contribute to the training of undergraduate and graduate students at San Diego State University (SDSU), a Hispanic Serving Institution. It will integrate mathematical biology research activities in the undergraduate curriculum at SDSU and train students early in their career to approach scientific inquiry in a way that crosses scientific disciplines. Furthermore, this project will provide a summer workshop to guide local teachers-leaders in creating teaching modules that integrate quantitative research and foster critical thinking in high school students in high-need urban schools.This award is jointly funded by the MPS-DMS-Mathematical Biology program, BIO-MCB-Cellular Dynamics and Function program, and MPS-PHY-Physics of Living Systems (PoLS) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将增进我们对控制复杂生物网络出现的机制的理解。它提出了结合实验室实验和多尺度数学模型的新方法来表征乳腺的分支形态发生。分支形态发生是女性乳腺在青春期发育树状结构的过程。它控制着其他树状器官的形成,如肺、唾液腺和肾脏。分支形态发生缺陷可导致高血压、慢性肾衰竭和肺功能不良。在乳腺癌的发生和进展过程中,控制分支形态发生的机制被规避或改变。了解产生分支器官的机制可能会找到治疗乳腺癌、再生器官功能或设计人造器官来对抗疾病的新方法。在青春期,分支形态发生产生广泛的乳腺上皮导管网络。上皮导管网络在其基部与乳头相连,在新生儿乳汁合成和分泌中起着关键作用。组织环境中的分子和机械因素对于正常的分支形态发生很重要。该领域的大多数研究都集中在识别关键分子因子及其调节分支形态发生的机制。机械信号如何调节分支形态发生仍然很大程度上未知。本研究提出的数学模型将有助于弥合这一差距。该项目将建立新颖的多尺度数学模型,以预测机械信号和细胞信号之间的相互作用如何调节乳腺导管网络的形成。分支形态发生通过两个阶段发生:第一阶段是通过单个导管尖端的连续几轮伸长和分裂(即尖端分叉),第二阶段是通过沿着现有导管的侧面出芽(即侧分支)。 已知细胞外基质 (ECM) 硬度的增加会增加上皮导管分支起始的部位。然而,源自 ECM 的机械信号如何影响分支伸长、尖端分叉和侧分支尚不完全清楚。该项目将 (1) 结合最佳传输理论、基于代理的模型和实验室实验数据来预测 ECM 和上皮细胞之间的相互作用如何调节乳腺导管分支伸长和尖端分叉,(2) 应用拓扑数据分析和多重分形分析可预测张力和 ECM 刚度对乳腺导管尖端分叉和侧分支的作用。这项研究的结果将提高我们对生物力学力如何影响导管网络形成的理解。该职业项目将有助于培训西班牙裔服务机构圣地亚哥州立大学 (SDSU) 的本科生和研究生。它将把数学生物学研究活动整合到圣地亚哥州立大学的本科课程中,并在学生职业生涯的早期培训他们以跨科学学科的方式进行科学探究。此外,该项目还将举办夏季研讨会,指导当地教师领导者创建教学模块,整合定量研究并培养高需求城市学校高中生的批判性思维。该奖项由 MPS-DMS-Mathematical 联合资助生物学计划、BIO-MCB-细胞动力学和功能计划以及 MPS-PHY-生命系统物理学 (PoLS) 计划。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uduak George其他文献

Uduak George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
  • 批准号:
    10382128
  • 财政年份:
    2022
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
  • 批准号:
    10570167
  • 财政年份:
    2022
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting perturbations of RNA binding proteins to their consequences
将 RNA 结合蛋白的扰动与其后果联系起来
  • 批准号:
    10532697
  • 财政年份:
    2021
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting perturbations of RNA binding proteins to their consequences
将 RNA 结合蛋白的扰动与其后果联系起来
  • 批准号:
    10388840
  • 财政年份:
    2021
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting transcriptional control to mechanisms of morphogenesis
将转录控制与形态发生机制联系起来
  • 批准号:
    10398905
  • 财政年份:
    2020
  • 资助金额:
    $ 60.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了