CAREER: Connecting biology and mechanics through a multiscale modeling of pubertal mammary gland development

职业:通过青春期乳腺发育的多尺度建模将生物学和力学联系起来

基本信息

  • 批准号:
    2240155
  • 负责人:
  • 金额:
    $ 60.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

This research will advance our understanding of the mechanism that governs the emergence of complex biological networks. It proposes novel approaches for combining laboratory experiments and multiscale mathematical modeling to characterize branching morphogenesis in the mammary gland. Branching morphogenesis is a process by which the female mammary gland develops its tree-like structure during puberty. It governs the formation of other tree-like organs such as the lungs, salivary gland, and kidney. Defects in branching morphogenesis can lead to hypertension, chronic kidney failure, and poor lung function. Mechanisms that control branching morphogenesis are circumvented or altered during the development and progression of breast cancer. Understanding the mechanisms that generate branched organs may identify novel ways to treat breast cancer, regenerate organ function, or design artificial organs to combat diseases. At puberty, branching morphogenesis generates an extensive network of mammary gland epithelium ducts. The epithelium ductal network is connected at its base to the nipple and plays a key role in milk synthesis and secretion for neonates. Molecular and mechanical factors in the tissue environment are important for normal branching morphogenesis. Majority of the research in this area has focused on identifying key molecular factors and the mechanisms by which they regulate branching morphogenesis. How mechanical signaling regulates branching morphogenesis remains largely unknown. The mathematical models proposed in this research will contribute to bridging this gap. This project will build novel multiscale mathematical models to predict how the interactions between mechanical and cellular signaling regulate the formation of the mammary ductal network. Branching morphogenesis occurs through two stages: the first stage is via successive rounds of elongation and splitting of the tip of individual ducts (i.e., tip bifurcation) and the second stage is via budding along the sides of existing ducts (i.e., side branching). Increased extracellular matrix (ECM) stiffness is known to increase the sites for epithelium ductal branch initiation. However, how the mechanical signaling originating from the ECM affects branch elongation, tip bifurcation and side branching is not fully understood. This project will (1) combine optimal transport theory, agent-based models, and data from laboratory experiments to predict how interactions between ECM and epithelium cells regulate ductal branch elongation and tip bifurcation in the mammary gland, (2) apply topological data analysis and multifractal analysis to predict the role of tensional force and ECM stiffness on ductal tip bifurcation and side branching in the mammary gland. Findings from this research will improve our understanding of how biomechanical forces affect ductal network formation. This CAREER project will contribute to the training of undergraduate and graduate students at San Diego State University (SDSU), a Hispanic Serving Institution. It will integrate mathematical biology research activities in the undergraduate curriculum at SDSU and train students early in their career to approach scientific inquiry in a way that crosses scientific disciplines. Furthermore, this project will provide a summer workshop to guide local teachers-leaders in creating teaching modules that integrate quantitative research and foster critical thinking in high school students in high-need urban schools.This award is jointly funded by the MPS-DMS-Mathematical Biology program, BIO-MCB-Cellular Dynamics and Function program, and MPS-PHY-Physics of Living Systems (PoLS) program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将促进我们对控制复杂生物网络出现的机制的理解。它提出了结合实验室实验和多尺度数学建模的新方法,以表征乳腺中的分支形态发生。分支形态发生是雌性乳腺在青春期期间发展其树状结构的过程。它控制着其他类似树状器官的形成,例如肺,唾液腺和肾脏。分支形态发生的缺陷会导致高血压,慢性肾衰竭和肺功能不良。控制分支形态发生的机制在乳腺癌的发展和发展过程中被绕开或改变。了解产生分支器官的机制可能会确定治疗乳腺癌,再生器官功能或设计人工器官以对抗疾病的新方法。在青春期,分支形态发生会产生广泛的乳腺上皮管道网络。导管网络在其基部连接到乳头,并在牛奶合成和新生儿的分泌中起关键作用。组织环境中的分子和机械因素对于正常分支形态发生很重要。该领域的大多数研究都集中在识别关键分子因素和调节分支形态发生的机制。机械信号如何调节分支形态发生仍然很大程度上未知。这项研究中提出的数学模型将有助于弥合这一差距。该项目将建立新型的多尺度数学模型,以预测机械信号和细胞信号之间的相互作用如何调节乳腺导管网络的形成。分支形态发生通过两个阶段进行:第一阶段是通过连续的伸长和分裂单个管道的尖端(即尖端分叉)分裂的,第二阶段是通过沿现有管道的侧面(即,侧分支)萌芽。 已知细胞外基质(ECM)刚度的增加会增加导管分支开始的位点。但是,尚不完全了解来自ECM的机械信号如何影响分支伸长,尖端分叉和侧向分支。该项目(1)将结合最佳运输理论,基于代理的模型以及实验室实验的数据,以预测ECM和上皮细胞之间的相互作用如何调节导管分支的伸长和(在乳腺中的尖端分叉),(2)采用拓扑数据分析和多胎面分析以预测张力和ECM刚性刚性分支的作用。这项研究的结果将提高我们对生物力学如何影响导管网络形成的理解。该职业项目将有助于西班牙裔服务机构圣地亚哥州立大学(SDSU)的本科生和研究生培训。它将在SDSU的本科课程中整合数学生物学研究活动,并在职业生涯的早期培训学生,以跨越科学学科的方式进行科学探究。 Furthermore, this project will provide a summer workshop to guide local teachers-leaders in creating teaching modules that integrate quantitative research and foster critical thinking in high school students in high-need urban schools.This award is jointly funded by the MPS-DMS-Mathematical Biology program, BIO-MCB-Cellular Dynamics and Function program, and MPS-PHY-Physics of Living Systems (PoLS) program.This award reflects NSF's法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的审查标准来评估的值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Uduak George其他文献

Uduak George的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于连接蛋白43介导胶质瘤生物学功能/替莫唑胺耐药及β-谷甾醇治疗的机制研究
  • 批准号:
    82260492
  • 批准年份:
    2022
  • 资助金额:
    33.00 万元
  • 项目类别:
    地区科学基金项目
K48连接多聚泛素链亲和标记探针的化学合成及生物学应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于连接蛋白43介导胶质瘤生物学功能/替莫唑胺耐药及β-谷甾醇治疗的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
K48连接多聚泛素链亲和标记探针的化学合成及生物学应用
  • 批准号:
    22277113
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
  • 批准号:
    10382128
  • 财政年份:
    2022
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting in vitro glutamine synthetase biophysics with the cellular environment
将体外谷氨酰胺合成酶生物物理学与细胞环境联系起来
  • 批准号:
    10570167
  • 财政年份:
    2022
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting perturbations of RNA binding proteins to their consequences
将 RNA 结合蛋白的扰动与其后果联系起来
  • 批准号:
    10532697
  • 财政年份:
    2021
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting perturbations of RNA binding proteins to their consequences
将 RNA 结合蛋白的扰动与其后果联系起来
  • 批准号:
    10388840
  • 财政年份:
    2021
  • 资助金额:
    $ 60.01万
  • 项目类别:
Connecting transcriptional control to mechanisms of morphogenesis
将转录控制与形态发生机制联系起来
  • 批准号:
    10398905
  • 财政年份:
    2020
  • 资助金额:
    $ 60.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了