CAREER: Optimism in Causal Reasoning via Information-theoretic Methods

职业:通过信息论方法进行因果推理的乐观主义

基本信息

  • 批准号:
    2239375
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Reasoning about the causes and effects of phenomena is a fundamental problem in the development of artificial intelligence. Causal reasoning from data also plays a key role in several disciplines, from engineering and computer science to medical research. A formal mathematical theory of probabilistic causation has been developed in the last few decades by Pearl (1995). Several algorithms that illustrate how much qualitative and quantitative causal knowledge can be extracted from data under well-defined assumptions have been proposed within this formalism. These algorithms employ a worst-case view: if the answer to a causal question is not unique, they return that the result is not identifiable. However, such an approach is unsuitable for many real-world systems that violate these crucial assumptions to varying degrees. The investigator argues that it is possible to significantly expand the applicability of causality theory by identifying simple causal explanations in the data that are unlikely to occur by chance. This project will extend the theory of causation to a much wider set of real-world instances by enabling causal reasoning for most models rather than in the worst case.To expand the scope of the state-of-the-art causal reasoning formalism, the investigator will develop novel algorithms that identify information-theoretically simple explanations of the underlying causal system from data. The first thrust seeks to develop methods to learn causal relations from observational data via an information-theoretic interpretation of Occam’s razor based on the entropy of the causal system. A second thrust will analyze how information-theoretically simple explanations can help approximately compute causal effects that are not identifiable in the worst case. A third thrust will leverage the results of the first two thrusts to develop experimental design algorithms for efficiently learning causal structures and causal effects via interventions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
关于现象的原因和影响的推理是人工智能发展的基本问题。从工程和计算机科学到医学研究,来自数据的因果推理在几个学科中也起着关键作用。 Pearl(1995)在过去的几十年中已经开发了一种概率原因的形式数学理论。在这种格式化中提出了几种算法,这些算法说明了在定义明确的假设下可以从数据中提取多少定性和定量因果知识。这些算法员工是最糟糕的观点:如果对灾难性问题的答案不是唯一的,那么他们返回结果是无法识别的。但是,这种方法不适合许多在不同程度上违反这些关键假设的现实世界系统。研究者认为,可以通过确定数据中不太可能偶然发生的简单灾难性解释来显着扩大休闲理论的适用性。该项目将通过为大多数模型而不是最坏的情况启用偶然的推理来扩展原因理论,以扩大最先进的因果关系形式的范围,将其扩展到更广泛的现实世界实例,研究人员将开发出新的算法,从而识别来自数据的基本CAUSAL系统的简单解释的新型算法。第一个推力试图通过基于因果系统的熵对Occam的剃须刀的信息理论解释从观察数据中学习因果关系的方法。第二个推力将分析信息理论的简单解释如何有助于大致计算最坏情况下无法识别的灾难效应。第三个推力将利用前两个推力的结果来开发实验设计算法,以通过干预措施有效地学习因果结构和因果关系。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来通过评估来诚实地通过评估来诚实地支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximate Allocation Matching for Structural Causal Bandits with Unobserved Confounders
具有未观察到的混杂因素的结构性因果强盗的近似分配匹配
Minimum-Entropy Coupling Approximation Guarantees Beyond the Majorization Barrier
  • DOI:
    10.48550/arxiv.2302.11838
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Spencer Compton;Dmitriy A. Katz;Benjamin Qi;K. Greenewald;Murat Kocaoglu
  • 通讯作者:
    Spencer Compton;Dmitriy A. Katz;Benjamin Qi;K. Greenewald;Murat Kocaoglu
Finding Invariant Predictors Efficiently via Causal Structure
通过因果结构有效找到不变预测变量
Causal Discovery in Semi-Stationary Time Series
半平稳时间序列中的因果发现
Front-door Adjustment Beyond Markov Equivalence with Limited Graph Knowledge
  • DOI:
    10.48550/arxiv.2306.11008
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abhin Shah;Karthikeyan Shanmugam;Murat Kocaoglu
  • 通讯作者:
    Abhin Shah;Karthikeyan Shanmugam;Murat Kocaoglu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Murat Kocaoglu其他文献

Sample Efficient Active Learning of Causal Trees
因果树的高效主动学习示例
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Greenewald;Dmitriy A. Katz;Karthikeyan Shanmugam;Sara Magliacane;Murat Kocaoglu;Enric Boix Adserà;Guy Bresler
  • 通讯作者:
    Guy Bresler
MRI in long-term evaluation of reconstructed hind-feet of land–mine trauma patients
  • DOI:
    10.1016/j.ejrad.2006.11.018
  • 发表时间:
    2007-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hatice Tuba Sanal;Nail Bulakbasi;Murat Kocaoglu;Duzgun Yildirim
  • 通讯作者:
    Duzgun Yildirim
Adaptive Online Experimental Design for Causal Discovery
用于因果发现的自适应在线实验设计
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Qasim Elahi;Lai Wei;Murat Kocaoglu;Mahsa Ghasemi
  • 通讯作者:
    Mahsa Ghasemi
Communication theoretic analysis of the synaptic channel for cortical neurons
皮层神经元突触通道的通讯理论分析
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derya Malak;Murat Kocaoglu;Ö. Akan
  • 通讯作者:
    Ö. Akan
Characterization and Learning of Causal Graphs with Latent Variables from Soft Interventions
软干预中具有潜变量的因果图的表征和学习
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Murat Kocaoglu;Amin Jaber;Karthikeyan Shanmugam;E. Bareinboim
  • 通讯作者:
    E. Bareinboim

Murat Kocaoglu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

乐观的估价皮层-杏仁核/腹侧纹状体网络协同作用机制的脑影像研究
  • 批准号:
    32300909
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
创新乐观信念、延续性创新决策与价值传递:基于创新预期信息有效性视角
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
工程项目组织沟通网络拓扑结构对有害集体乐观偏差的影响机理分析与控制研究
  • 批准号:
    71771178
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
替代性乐观偏向的认知和神经机制
  • 批准号:
    31771204
  • 批准年份:
    2017
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
积极还是忧郁:特质性乐观与悲观人群的行为与神经机制研究
  • 批准号:
    31500906
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AI4HOPE: ARTIFICIAL INTELLIGENCE BASED HEALTH, OPTIMISM, PURPOSE, AND ENDURANCE IN PALLIATIVE CARE FOR DEMENTIA
AI4HOPE:基于人工智能的痴呆症姑息治疗中的健康、乐观、目标和耐力
  • 批准号:
    10103129
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
A Multisystem Resilience Approach in the Assessment of Postsurgical Pain Trajectories
评估术后疼痛轨迹的多系统弹性方法
  • 批准号:
    10736041
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Optimizing Care for Older Adults through Thyroid Hormone Deprescribing
通过减少甲状腺激素处方来优化老年人的护理
  • 批准号:
    10733478
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Adapting and Piloting an Evidence-based Intervention to Improve Hypertension Care among Tanzanians Living with HIV
调整和试点循证干预措施以改善坦桑尼亚艾滋病毒感染者的高血压护理
  • 批准号:
    10750666
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Circulating Proteomics to Phenotype the Development and Reversal of Myocardial Remodeling in Aortic Stenosis
循环蛋白质组学对主动脉瓣狭窄心肌重塑的发展和逆转进行表型分析
  • 批准号:
    10844786
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了