CAREER: Experimental Investigation into the Impact of Incoming Boundary Layer State on the Unsteady Dynamics of a Transverse Jet in a Hypersonic Crossflow
职业:高超声速横流中传入边界层状态对横向射流非定常动力学影响的实验研究
基本信息
- 批准号:2239156
- 负责人:
- 金额:$ 61.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-15 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Hypersonic flight has obvious appeal given the potential to connect people across the globe by reducing international travel times by a factor of 5 or more, enhancing access to space, and strengthening national defense. Traditional aerodynamic control surfaces seen on aircraft like flaps and fins are ineffective at certain speeds and high altitudes owing primarily to the low pressures and densities in the Earth’s upper atmosphere. This necessitates the use of alternative means of vehicle control for hypersonic systems, which generally takes the form of control jets. An improved understanding of the physics of these interactions will also help improve high-speed engine efficiency and reduce their carbon footprint. When fired into a high-speed flow; however, these jets can create massive disturbances in the flowfield that are complex to model. The current lack of proper predictive tools has rendered jet-based control and fuel-injection unreliable, yet little validation-quality experimental data for this fundamental problem exists in the current literature base. This project will address this need by producing validation-quality experimental datasets of jets issuing into a hypersonic crossflow using the Mach 7 wind tunnel facility at The University of Texas at San Antonio. The acquired data will help unravel the complex physics of this critical flow phenomenon and impact future high-speed vehicle design.This research program will be accomplished in three phases: 1) in-depth characterization of the unsteady dynamics of a jet-in-crossflow over a wide high-speed parameter space; 2) comparison of jet-in-crossflow fluid physics to an analogous standing cylinder geometry; 3) investigation of the transient dynamics of the initiation of a jet in a high-speed crossflow. This work will impact hypersonic aerodynamic research by: 1) quantifying unsteady dynamics and surface loads of jet-in-cross-flow interactions for varied incoming boundary layer states and Mach numbers; 2) characterizing the impact of these jet interactions on control moments for a flat plate; 3) generating validation data for model development. This research will also be tightly integrated with educational outreach. Given the diverse population in San Antonio and The University of Texas at San Antonio’s status as a minority-serving institution, this project will serve as a platform to engage a diverse group of students. The ambitious educational activities include the incorporation of research into new courses (100 students per semester) and design projects through innovative curricula. Internship experiences with local community college partners will support at least three summer students each year.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高超音速飞行具有明显的吸引力,因为它有可能通过将国际旅行时间减少五倍或更多来连接全球各地的人们,增加进入太空的机会,并加强飞机上传统的空气动力学控制面(如襟翼和尾翼)的无效性。主要是由于地球高层大气的低压和密度,在某些速度和高海拔下,这需要使用高超音速系统的替代飞行器控制手段,通常采用控制喷气机的形式。更好地了解这些相互作用的物理原理也将有助于提高高速发动机的效率并减少其碳足迹;然而,当喷射到高速流中时,这些射流可能会在流场中产生巨大的扰动,而这种扰动很难建模。目前缺乏适当的预测工具,导致基于喷气机的控制和燃油喷射不可靠,但当前文献库中几乎没有针对这一基本问题的验证质量实验数据,该项目将通过生成验证质量实验数据集来满足这一需求。喷气机进入高超音速使用德克萨斯大学圣安东尼奥分校的 7 马赫风洞设施进行横流分析。获得的数据将有助于揭示这种临界流动现象的复杂物理原理,并影响未来的高速车辆设计。该研究计划将分三个阶段完成: 1) 深入表征宽广的高速参数空间内横流射流的非定常动力学;2) 横流射流流体物理与类似的直立圆柱体几何形状的比较;3) 瞬态研究;启动的动力学这项工作将通过以下方式影响高超音速空气动力学研究:1)量化不同传入边界层状态和马赫数的射流交叉流相互作用的非定常动力学和表面载荷2)表征影响;考虑到圣安东尼奥人口的多样性以及德克萨斯大学圣安东尼奥分校的地位,该研究还将与平板控制力矩上的射流相互作用紧密结合。少数族裔服务该项目将作为一个吸引多元化学生群体的平台,包括将研究纳入新课程(每学期 100 名学生),并通过与当地社区大学合作伙伴的创新课程设计项目。每年支持至少三名暑期学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Combs其他文献
Christopher Combs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Combs', 18)}}的其他基金
EEC Planning: Track 1 BPE for Development of Hypersonics Research Collaborations
EEC 规划:用于发展高超音速研究合作的 Track 1 BPE
- 批准号:
2217753 - 财政年份:2022
- 资助金额:
$ 61.79万 - 项目类别:
Standard Grant
相似国自然基金
PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
- 批准号:82301240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LL-37基于线粒体动力学和代谢重编程调节小胶质细胞极化改善实验性自身免疫性脑脊髓炎的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:35 万元
- 项目类别:地区科学基金项目
基于空间转录组技术筛选皮肤损伤时间特异性生物学指标及构建智能化损伤时间准确推断模型的实验性研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Function and regulation of heterotrimeric G proteins in ciliogenesis and pathobiology of neurodevelopmental disorders
异源三聚体 G 蛋白在纤毛发生和神经发育障碍病理学中的功能和调节
- 批准号:
10651317 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
- 批准号:
10751722 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别:
Harnessing PET to Study the In Vivo Fate and Health Effects of Micro- and Nanoplastics
利用 PET 研究微塑料和纳米塑料的体内命运和健康影响
- 批准号:
10890903 - 财政年份:2023
- 资助金额:
$ 61.79万 - 项目类别: