RUI: Topological Excitations in Spin-1 and Spin-2 Bose-Einstein Condensates
RUI:Spin-1 和 Spin-2 玻色-爱因斯坦凝聚中的拓扑激发
基本信息
- 批准号:2207631
- 负责人:
- 金额:$ 42.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symmetry is one of the central organizing principles in the natural world. It applies to the most energetic system we can contemplate - the early universe - as well as to some of the least energetic, such as a dilute gas cooled to only tens of billionths of a degree above absolute zero. This tabletop experimental project uses the theme of symmetry to focus on the highly-controllable, low-energy environment of an ultracold gas where direct experimental investigation is possible. Although we often think of symmetry in terms of spatial patterns, such as the regular structure of a crystal, symmetries can also be internal and hidden from view. Their influence in such cases manifests itself in the type and behavior of the particle-like (or "quasi-particle") excitations that can exist within the medium. Examples of quasi-particles that can be observed in an ultracold gas include monopoles, knots, skyrmions, and vortices, each of which has an (as-yet unobserved) analogue in the cosmos. The project will study the creation and time evolution of such quasi-particles in a medium with a broader range of internal symmetries than in previous experiments. The resulting quasi-particle behavior is expected to be more exotic: an ordinary collision between two vortices, for instance, can become one in which connecting filaments develop in the region between them, leaving behind a permanent physical record of the encounter. The program provides opportunities for cutting-edge scientific and technological training for undergraduate students, thereby contributing to the education of the next generation of citizen-scientists.This experimental research program explores the creation and time evolution of topological excitations in optically trapped rubidium-87 Bose-Einstein condensates. The spin degree of freedom in these superfluids leads to a variety of magnetic phases with different internal symmetries. Each phase can host specific topological excitations. The Rb-87 condensate is especially interesting because it has both spin-1 and spin-2 ground state hyperfine manifolds. The spin-1 system is relatively simple, with only two magnetic phases. It provides a convenient springboard from which to understand the spin-2 system, which has five magnetic phases, two of which have entirely discrete symmetries: cyclic-tetrahedral, and biaxial nematic. The spin-2 Rb-87 system is not fully characterized, and immediate experimental goals include (i) determining the ground state magnetic phase, and (ii) understanding the baseline time-evolution of each magnetic phase. Topological excitations in the biaxial nematic and cyclic-tetrahedral phases are of considerable interest as the discrete symmetries permit vortices with fractional circulation. Moreover, collisions between vortices in these phases are expected to yield "rung vortices," which are permanent filaments that bridge the departing vortices. Beyond vortices, the experiments will examine the creation and time evolution of monopoles in the uniaxial nematic phase, which are expected to decay into vortex rings, as well as of exotic skyrmions in the discrete-symmetry magnetic phases. The different excitations will be generated by exposing the condensate to carefully tailored time-dependent magnetic and optical fields, and will be characterized using established imaging techniques. The results, obtained by the PI and his undergraduate collaborators, are expected to contribute directly to our scientific understanding of topological excitations across many branches of physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称是自然界的中心组织原则之一。它适用于我们可以想象的能量最高的系统 - 早期宇宙 - 以及一些能量最低的系统,例如冷却到仅高于绝对零的数十亿分之一度的稀气体。这个桌面实验项目以对称性为主题,重点关注超冷气体的高度可控、低能量环境,可以直接进行实验研究。尽管我们经常从空间图案的角度来考虑对称性,例如晶体的规则结构,但对称性也可以是内部的并且隐藏在视图之外。在这种情况下,它们的影响体现在介质内存在的类粒子(或“准粒子”)激发的类型和行为中。可以在超冷气体中观察到的准粒子的例子包括单极子、结、斯格明子和涡旋,每种粒子在宇宙中都有一个(尚未观察到的)类似物。该项目将研究这种准粒子在具有比以前的实验更广泛的内部对称性的介质中的产生和时间演化。由此产生的准粒子行为预计会更加奇特:例如,两个漩涡之间的普通碰撞可能会变成在它们之间的区域中形成连接细丝的碰撞,从而留下相遇的永久物理记录。该项目为本科生提供尖端科学技术培训的机会,从而为下一代公民科学家的教育做出贡献。该实验研究项目探索光学捕获铷87玻色中拓扑激发的产生和时间演化-爱因斯坦凝聚。这些超流体中的自旋自由度导致具有不同内部对称性的各种磁相。每个相都可以承载特定的拓扑激发。 Rb-87 凝聚体特别有趣,因为它同时具有自旋 1 和自旋 2 基态超精细流形。 spin-1系统相对简单,只有两个磁相。它为理解 spin-2 系统提供了一个方便的跳板,该系统具有五个磁相,其中两个具有完全离散的对称性:循环四面体和双轴向列。 spin-2 Rb-87 系统尚未完全表征,当前的实验目标包括 (i) 确定基态磁相,以及 (ii) 了解每个磁相的基线时间演化。双轴向列相和循环四面体相中的拓扑激发引起了相当大的兴趣,因为离散对称性允许存在分数循环的涡流。此外,这些阶段中涡流之间的碰撞预计会产生“横档涡流”,它是桥接离开涡流的永久细丝。 除了涡旋之外,实验还将研究单轴向列相中单极子的产生和时间演化,预计单轴向列相中单极子会衰变成涡环,以及离散对称磁相中奇异的斯格明子。通过将凝聚物暴露于精心定制的时间相关磁场和光场中,可以产生不同的激发,并使用现有的成像技术对其进行表征。由 PI 及其本科合作者获得的结果预计将直接有助于我们对物理学许多分支的拓扑激发的科学理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Hall其他文献
Aicardi–Goutières syndrome presenting with haematemesis in infancy
Aicardi-Goutières 综合征表现为婴儿期吐血
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:3.8
- 作者:
David Hall;Gillian I. Rice;N. Akbar;A. Meager;Y. Crow;Ming Lim - 通讯作者:
Ming Lim
When online student numbers double during a pandemic
当大流行期间在线学生人数翻倍时
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Nicholas WD Bowskill;David Hall;L. Hutchinson;Melody Harrogate - 通讯作者:
Melody Harrogate
Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy. INCAS Study Group.
在抗逆转录病毒治疗期间长期抑制 HIV-1 后,免疫恢复并不一定会发生。
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
N. Pakker;Eugene D.M.B. Kroon;Marijke T. L. Roos;S. Otto;David Hall;Ferdinand W. N. M. Wit;Dörte Hamann;Marina E. van der Ende;Frans A.P. Claessen;Robert H. Kauffmann;P. P. Koopmans;F. P. Kroon;C. T. Napel;Herman G. Sprenger;Hugo M. Weigel;Julio S G Montaner;J. Lange;Peter Reiss;P. Schellekens;Frank Miedema - 通讯作者:
Frank Miedema
What can robotics research learn from computer vision research?
机器人研究可以从计算机视觉研究中学到什么?
- DOI:
10.1007/978-3-030-95459-8_61 - 发表时间:
2020-01-08 - 期刊:
- 影响因子:0
- 作者:
Peter Corke;Feras Dayoub;David Hall;John Skinner;Niko Sünderhauf - 通讯作者:
Niko Sünderhauf
David Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Hall', 18)}}的其他基金
(Horticulture) Pheromone of Apple Sawfly: New Tool for Management of a Re-emerging Pest
(园艺)苹果叶蜂的信息素:管理重新出现的害虫的新工具
- 批准号:
BB/X011895/1 - 财政年份:2023
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
New direction in high temperature dielectrics: unlocking performance of doped tungsten bronze oxides through mechanistic understanding
高温电介质的新方向:通过机理理解解锁掺杂钨青铜氧化物的性能
- 批准号:
EP/V053183/1 - 财政年份:2022
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
Aerosol Deposition for Manufacturing and Developing Next Generation Dielectric Charge Storage Devices
用于制造和开发下一代介电电荷存储器件的气溶胶沉积
- 批准号:
EP/S028978/1 - 财政年份:2020
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
Exploitation of interspecific signals to deter oviposition by spotted-wing drosophila
利用种间信号阻止斑翅果蝇产卵
- 批准号:
BB/S005641/1 - 财政年份:2019
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
RUI: Topological Excitations in Spinor Bose-Einstein Condensates
RUI:旋量玻色-爱因斯坦凝聚中的拓扑激发
- 批准号:
1806318 - 财政年份:2018
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
SBIR Phase I: Automated Census of Street Trees from Public Imagery
SBIR 第一阶段:根据公共图像对街道树木进行自动普查
- 批准号:
1648144 - 财政年份:2017
- 资助金额:
$ 42.61万 - 项目类别:
Standard Grant
15AGRITECHCAT4: Early attractants for the major new fruit pest, Drosophila suzukii; a 'super lure'
15AGRITECHCAT4:主要新水果害虫铃木果蝇的早期引诱剂;
- 批准号:
BB/N014006/1 - 财政年份:2016
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
RUI: Experiments with Topological Excitations in Bose-Einstein Condensates
RUI:玻色-爱因斯坦凝聚体中的拓扑激发实验
- 批准号:
1519174 - 财政年份:2015
- 资助金额:
$ 42.61万 - 项目类别:
Standard Grant
New approaches for the early detection of tree health pests and pathogens
早期检测树木健康害虫和病原体的新方法
- 批准号:
BB/L012375/1 - 财政年份:2014
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
Snapshot CMOS: The Future of Hyperspectral Imaging.
快照 CMOS:高光谱成像的未来。
- 批准号:
NE/L012553/1 - 财政年份:2014
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
相似国自然基金
基于拓扑学优化的负极异质界面设计及力/电化学耦合行为研究
- 批准号:12302124
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多自由参数时滞系统完全稳定性问题:代数几何方法和拓扑学视角
- 批准号:62303100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
值域为树的函数空间的无限维拓扑学及其应用
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
耐碳青霉烯类鲍曼不动杆菌生物被膜形成相关分子互作网络的代数拓扑学研究及治疗意义
- 批准号:82273978
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
拓扑学增强的弱监督学习模型对多模态重离子放疗影像的靶区勾画
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Topological superconductivity and high order non-abelian excitations
拓扑超导和高阶非阿贝尔激发
- 批准号:
2005092 - 财政年份:2020
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
Theoretical studies on couplings between surface Majorana fermions and boson excitations in topological superconductors and superfluids
拓扑超导体和超流体中表面马约拉纳费米子与玻色子激发耦合的理论研究
- 批准号:
19K14662 - 财政年份:2019
- 资助金额:
$ 42.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RUI: Topological Excitations in Spinor Bose-Einstein Condensates
RUI:旋量玻色-爱因斯坦凝聚中的拓扑激发
- 批准号:
1806318 - 财政年份:2018
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
Experimental investigation of topological excitations in magnetic tunneling junctions
磁隧道结拓扑激发的实验研究
- 批准号:
1809155 - 财政年份:2018
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
Topological Excitations in Quantum Condensates with Complex Order Parameters
具有复杂有序参数的量子凝聚体中的拓扑激发
- 批准号:
17K05554 - 财政年份:2017
- 资助金额:
$ 42.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)