RUI: Topological Excitations in Spinor Bose-Einstein Condensates

RUI:旋量玻色-爱因斯坦凝聚中的拓扑激发

基本信息

  • 批准号:
    1806318
  • 负责人:
  • 金额:
    $ 51万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Humans have long had a fascination with symmetry, a concept familiar to anyone who has glanced in a mirror or contemplated their left and right hands. Indeed, symmetry is a fundamental organizing principle that appears in every scientific discipline. In physics, symmetries often manifest themselves in terms of topology, or the study of how shapes and structures may - or may not - be deformed continuously into one another. Topology has recently emerged as an important and increasingly relevant topic in modern physics, as recognized by the 2016 Nobel Prize. Shared topological features in different physical systems permit complementary studies, even when those systems are extremely different. For example, similar physics can be studied both in giant particle accelerators at the highest energies and in tabletop apparatus at the coldest temperatures. The ultracold environment central to this research is a dilute gas cooled to tens of billionths of a degree above absolute zero, at which point it develops properties that make it into a kind of well-controlled "universe" into which may be summoned analogues of particles that might - or, perhaps more interestingly, might not - appear in the "real" universe. This project will study the creation and time-evolution of these particle-like phenomena, including point-like monopoles and extended particles known as "skyrmions" and "knots." Such experiments can provide insight into the phenomena and behavior of many different topological systems, and contribute to emerging technologies based on their manipulation and control. The scientific program will also enhance the relationship between cutting-edge experimental research and undergraduate education by providing technological and scientific training opportunities for several highly motivated undergraduates, as well as for a graduate student researcher. In these ways it contributes to the education of the next generation of citizen-scientists.Particle-like topological structures are ubiquitous in physics, appearing in cosmology, particle physics, and condensed-matter physics, among others. They can exhibit a surprising degree of persistence, as they are characterized by a conserved topological charge. Superfluids, such as dilute-gas Bose-Einstein condensates, provide new and exciting opportunities to examine these excitations in highly-controlled environments. The underlying symmetries (and magnetic phases) of a superfluid determine what kinds of topological excitations it can support. This experimental research program examines three-dimensional topological excitations within spin-1 and spin-2 Bose-Einstein condensates, including monopoles, knots, and skyrmions. The spin-1 experiments will explore the time evolution of the excitations following their creation. The spin-2 experiments will begin by creating and exploring the topological excitations permitted by the wider variety of available magnetic phases, and answer similar questions about their time-evolution. The excitations will be created by exposing the condensate to time-dependent magnetic and optical fields, and will be subsequently characterized by close examination of the superfluid using established imaging techniques. The results are expected to contribute directly to our scientific understanding of topological excitations across the many branches of physics in which they appear. The scientific program will also enhance the relationship between cutting-edge experimental research and undergraduate education by providing technological and scientific training opportunities for several highly motivated undergraduates, as well as for a graduate student researcher.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类长期以来对对称性着迷,任何照过镜子或观察过自己左右手的人都熟悉这一概念。事实上,对称性是每个科学学科中都出现的基本组织原则。在物理学中,对称性通常以拓扑学的形式表现出来,或者研究形状和结构如何或不可以连续地相互变形。正如 2016 年诺贝尔奖所认可的那样,拓扑学最近已成为现代物理学中一个重要且日益相关的主题。不同物理系统中共享的拓扑特征允许互补研究,即使这些系统极其不同。例如,可以在最高能量的巨型粒子加速器和最冷温度的桌面设备中研究类似的物理现象。这项研究的核心超冷环境是一种冷却到绝对零以上几十亿分之一度的稀气体,此时它发展出的特性使其成为一种受良好控制的“宇宙”,可以在其中召唤粒子的类似物这可能——或者更有趣的是,可能不会——出现在“真实”的宇宙中。该项目将研究这些类粒子现象的产生和时间演化,包括点状单极子和被称为“斯格明子”和“结”的扩展粒子。此类实验可以深入了解许多不同拓扑系统的现象和行为,并有助于基于其操纵和控制的新兴技术。该科学项目还将通过为几名积极进取的本科生以及研究生研究员提供技术和科学培训机会,加强前沿实验研究和本科生教育之间的关系。通过这些方式,它有助于下一代公民科学家的教育。类粒子拓扑结构在物理学中无处不在,出现在宇宙学、粒子物理学和凝聚态物理学等领域。它们可以表现出令人惊讶的持久性,因为它们的特点是保守的拓扑电荷。超流体,例如稀气体玻色-爱因斯坦凝聚态,为在高度控制的环境中检查这些激发提供了新的、令人兴奋的机会。超流体的基本对称性(和磁相)决定了它可以支持哪种拓扑激发。该实验研究项目检查了自旋 1 和自旋 2 玻色-爱因斯坦凝聚体中的三维拓扑激发,包括单极子、结和斯格明子。 spin-1 实验将探索激发产生后的时间演化。 spin-2 实验将从创建和探索更广泛的可用磁相允许的拓扑激发开始,并回答有关其时间演化的类似问题。通过将凝聚物暴露于随时间变化的磁场和光场来产生激发,并随后使用已建立的成像技术对超流体进行仔细检查来表征。这些结果预计将直接有助于我们对拓扑激发的科学理解,跨越它们出现的许多物理学分支。该科学项目还将通过为几名积极进取的本科生以及研究生研究人员提供技术和科学培训机会,加强前沿实验研究与本科生教育之间的关系。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过使用基金会的智力优势和更广泛的影响审查标准进行评估来获得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Decay of a Quantum Knot
量子结的衰变
  • DOI:
    10.1103/physrevlett.123.163003
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Ollikainen, T.;Blinova, A.;Möttönen, M.;Hall, D. S.
  • 通讯作者:
    Hall, D. S.
Controlled creation of a singular spinor vortex by circumventing the Dirac belt trick
通过绕过狄拉克带技巧来控制奇异旋量涡旋的产生
  • DOI:
    10.1038/s41467-019-12787-1
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Weiss, L. S.;Borgh, M. O.;Blinova, A.;Ollikainen, T.;Möttönen, M.;Ruostekoski, J.;Hall, D. S.
  • 通讯作者:
    Hall, D. S.
Existence, stability, and dynamics of monopole and Alice ring solutions in antiferromagnetic spinor condensates
反铁磁旋量凝聚中单极子和爱丽丝环解的存在性、稳定性和动力学
  • DOI:
    10.1103/physreva.105.053303
  • 发表时间:
    2021-12-23
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    T. Mithun;R. Carretero;E. Charalampidis;D. Hall;P. Kevrekidis
  • 通讯作者:
    P. Kevrekidis
Controlled creation and decay of singly-quantized vortices in a polar magnetic phase
极地磁相中单量子化涡旋的受控产生和衰减
  • DOI:
    10.1038/s42005-021-00554-y
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Xiao, Y.;Borgh, M. O.;Weiss, L. S.;Blinova, A. A.;Ruostekoski, J.;Hall, D. S.
  • 通讯作者:
    Hall, D. S.
Topological superfluid defects with discrete point group symmetries
具有离散点群对称性的拓扑超流体缺陷
  • DOI:
    10.1038/s41467-022-32362-5
  • 发表时间:
    2022-08-08
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xiao, Y.;Borgh, M. O.;Blinova, A.;Ollikainen, T.;Ruostekoski, J.;Hall, D. S.
  • 通讯作者:
    Hall, D. S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Hall其他文献

Aicardi–Goutières syndrome presenting with haematemesis in infancy
Aicardi-Goutières 综合征表现为婴儿期吐血
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    David Hall;Gillian I. Rice;N. Akbar;A. Meager;Y. Crow;Ming Lim
  • 通讯作者:
    Ming Lim
When online student numbers double during a pandemic
当大流行期间在线学生人数翻倍时
Issues in Methodology
方法论问题
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Hall;Irene M. Hall
  • 通讯作者:
    Irene M. Hall
Immune restoration does not invariably occur following long-term HIV-1 suppression during antiretroviral therapy. INCAS Study Group.
在抗逆转录病毒治疗期间长期抑制 HIV-1 后,免疫恢复并不一定会发生。
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Pakker;Eugene D.M.B. Kroon;Marijke T. L. Roos;S. Otto;David Hall;Ferdinand W. N. M. Wit;Dörte Hamann;Marina E. van der Ende;Frans A.P. Claessen;Robert H. Kauffmann;P. P. Koopmans;F. P. Kroon;C. T. Napel;Herman G. Sprenger;Hugo M. Weigel;Julio S G Montaner;J. Lange;Peter Reiss;P. Schellekens;Frank Miedema
  • 通讯作者:
    Frank Miedema
What can robotics research learn from computer vision research?
机器人研究可以从计算机视觉研究中学到什么?
  • DOI:
    10.1007/978-3-030-95459-8_61
  • 发表时间:
    2020-01-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Corke;Feras Dayoub;David Hall;John Skinner;Niko Sünderhauf
  • 通讯作者:
    Niko Sünderhauf

David Hall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Hall', 18)}}的其他基金

(Horticulture) Pheromone of Apple Sawfly: New Tool for Management of a Re-emerging Pest
(园艺)苹果叶蜂的信息素:管理重新出现的害虫的新工具
  • 批准号:
    BB/X011895/1
  • 财政年份:
    2023
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
RUI: Topological Excitations in Spin-1 and Spin-2 Bose-Einstein Condensates
RUI:Spin-1 和 Spin-2 玻色-爱因斯坦凝聚中的拓扑激发
  • 批准号:
    2207631
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
New direction in high temperature dielectrics: unlocking performance of doped tungsten bronze oxides through mechanistic understanding
高温电介质的新方向:通过机理理解解锁掺杂钨青铜氧化物的性能
  • 批准号:
    EP/V053183/1
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
Aerosol Deposition for Manufacturing and Developing Next Generation Dielectric Charge Storage Devices
用于制造和开发下一代介电电荷存储器件的气溶胶沉积
  • 批准号:
    EP/S028978/1
  • 财政年份:
    2020
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
Exploitation of interspecific signals to deter oviposition by spotted-wing drosophila
利用种间信号阻止斑翅果蝇产卵
  • 批准号:
    BB/S005641/1
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
SBIR Phase I: Automated Census of Street Trees from Public Imagery
SBIR 第一阶段:根据公共图像对街道树木进行自动普查
  • 批准号:
    1648144
  • 财政年份:
    2017
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
15AGRITECHCAT4: Early attractants for the major new fruit pest, Drosophila suzukii; a 'super lure'
15AGRITECHCAT4:主要新水果害虫铃木果蝇的早期引诱剂;
  • 批准号:
    BB/N014006/1
  • 财政年份:
    2016
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
RUI: Experiments with Topological Excitations in Bose-Einstein Condensates
RUI:玻色-爱因斯坦凝聚体中的拓扑激发实验
  • 批准号:
    1519174
  • 财政年份:
    2015
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
New approaches for the early detection of tree health pests and pathogens
早期检测树木健康害虫和病原体的新方法
  • 批准号:
    BB/L012375/1
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant
Snapshot CMOS: The Future of Hyperspectral Imaging.
快照 CMOS:高光谱成像的未来。
  • 批准号:
    NE/L012553/1
  • 财政年份:
    2014
  • 资助金额:
    $ 51万
  • 项目类别:
    Research Grant

相似国自然基金

基于拓扑学优化的负极异质界面设计及力/电化学耦合行为研究
  • 批准号:
    12302124
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多自由参数时滞系统完全稳定性问题:代数几何方法和拓扑学视角
  • 批准号:
    62303100
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
值域为树的函数空间的无限维拓扑学及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
耐碳青霉烯类鲍曼不动杆菌生物被膜形成相关分子互作网络的代数拓扑学研究及治疗意义
  • 批准号:
    82273978
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
拓扑学增强的弱监督学习模型对多模态重离子放疗影像的靶区勾画
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RUI: Topological Excitations in Spin-1 and Spin-2 Bose-Einstein Condensates
RUI:Spin-1 和 Spin-2 玻色-爱因斯坦凝聚中的拓扑激发
  • 批准号:
    2207631
  • 财政年份:
    2022
  • 资助金额:
    $ 51万
  • 项目类别:
    Standard Grant
Topological superconductivity and high order non-abelian excitations
拓扑超导和高阶非阿贝尔激发
  • 批准号:
    2005092
  • 财政年份:
    2020
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Theoretical studies on couplings between surface Majorana fermions and boson excitations in topological superconductors and superfluids
拓扑超导体和超流体中表面马约拉纳费米子与玻色子激发耦合的理论研究
  • 批准号:
    19K14662
  • 财政年份:
    2019
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Experimental investigation of topological excitations in magnetic tunneling junctions
磁隧道结拓扑激发的实验研究
  • 批准号:
    1809155
  • 财政年份:
    2018
  • 资助金额:
    $ 51万
  • 项目类别:
    Continuing Grant
Topological Excitations in Quantum Condensates with Complex Order Parameters
具有复杂有序参数的量子凝聚体中的拓扑激发
  • 批准号:
    17K05554
  • 财政年份:
    2017
  • 资助金额:
    $ 51万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了