CAREER: Quantum silicon phononics: Harnessing long-lived phonons for memories and interconnects

职业:量子硅声学:利用长寿命声子进行存储器和互连

基本信息

  • 批准号:
    2238058
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Over the last two decades, quantum technologies have progressed steadily, promising solutions to a wide range of applications in computation, communication, and sensing. The bulk of efforts in developing physical platforms for quantum technologies has so far focused on photons as carriers of quantum information and atomic and solid-state qubits for storing and processing quantum information. Phonons, the quanta of energy in vibrations in solid-state materials, have recently emerged as a viable resource for quantum technologies. Due to their ability to interact with a wide range of systems, phonons can serve as interconnects to pass quantum signals from the electrical domain, where quantum computers are likely to operate, to the optical domain, where optical fibers enable long-distance quantum communication. Additionally, phonons can be well isolated from their environments in nano-engineered devices, potentially providing memory elements for storing quantum states. Developing these physical properties into experimental capabilities and, subsequently, a technological advantage requires methods of interfacing mechanical devices with other quantum hardware platforms. This project aims to create scalable, chip-scale optical and electrical quantum interfaces to long-lived mechanical resonators. Furthermore, the project aims to assess the practical benefits of the developed interfaces by using them in experimental demonstrations that create quantum entanglement between electrical, optical, and mechanical quantum devices.GHz-frequency acoustic resonators made from single-crystal silicon offer the unique properties of exceptionally low loss (reaching 50-billion quality factors at low temperatures) and the ease of interfacing with telecom-band optical photons. However, while quantum manipulations of phonons have been previously demonstrated with piezoelectric coupling to superconducting qubits, the absence of piezoelectricity in silicon forbids direct integration with qubits. This project aims to overcome this challenge by developing new mechanisms for electromechanical coupling of GHz-frequency mechanical resonators with superconducting qubits and cavity optomechanical systems in a monolithic silicon-on-insulator platform. To achieve this goal, the project will develop electrostatic transducers based on phononic crystals and high-impedance microwave cavities based on kinetic inductance in disordered superconductors. Integrating these components, the PI aims to realize full quantum control of electromechanical resonators with transmon qubits and demonstrate electro-optomechanical conversion of microwave photons to optical photons. The absence of lossy piezoelectric materials and the reliance on light-resistant superconductors in this approach is expected to translate to exceptionally long mechanical lifetimes and orders-of-magnitude improvement in the efficiency of microwave-to-optical frequency conversion. The project aims to take benefit of these improvements for demonstrating quantum entangling operations in a lab-scale hybrid network made from transmon qubits (acting as processors), phononic crystal resonators (memory elements), and telecommunication band photons (interconnects). Demonstrating such a hybrid quantum network would be essential for future real-world applications in providing secure remote access to quantum computing clouds, distributed quantum computing, and quantum-enabled sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年中,量子技术稳步发展,为计算、通信和传感领域的广泛应用提供了有希望的解决方案。迄今为止,开发量子技术物理平台的大部分工作都集中在作为量子信息载体的光子以及用于存储和处理量子信息的原子和固态量子位。声子是固态材料振动中的能量量子,最近已成为量子技术的可行资源。由于声子能够与各种系统交互,因此可以充当互连器,将量子信号从量子计算机可能运行的电域传递到光纤实现长距离量子通信的光域。此外,声子可以在纳米工程设备中与其环境很好地隔离,从而有可能提供用于存储量子态的存储元件。将这些物理特性发展为实验能力,并随后获得技术优势,需要将机械设备与其他量子硬件平台连接起来的方法。该项目旨在为长寿命机械谐振器创建可扩展的芯片级光学和电量子接口。此外,该项目旨在通过在实验演示中使用所开发的接口来评估其实际效益,这些接口在电、光和机械量子器件之间产生量子纠缠。由单晶硅制成的 GHz 频率声谐振器具有以下独特特性:损耗极低(在低温下达到 500 亿质量因数)并且易于与电信频段光学光子连接。然而,虽然之前已经通过与超导量子位的压电耦合证明了声子的量子操纵,但硅中缺乏压电性,禁止与量子位直接集成。该项目旨在通过开发新机制来克服这一挑战,在单片绝缘体上硅平台中开发 GHz 频率机械谐振器与超导量子位和腔光机械系统的机电耦合。为了实现这一目标,该项目将开发基于声子晶体的静电换能器和基于无序超导体中的动感电感的高阻抗微波腔。集成这些组件,PI 旨在实现具有跨量子位的机电谐振器的完全量子控制,并演示微波光子到光学光子的电光机械转换。这种方法中不存在有损压电材料并且依赖耐光超导体,预计将转化为极长的机械寿命以及微波到光频率转换效率的数量级提高。该项目旨在利用这些改进,在由传输量子位(充当处理器)、声子晶体谐振器(存储元件)和电信频带光子(互连)组成的实验室规模混合网络中演示量子纠缠操作。演示这样的混合量子网络对于未来的现实世界应用程序至关重要,包括提供对量子计算云、分布式量子计算和量子传感的安全远程访问。该奖项反映了 NSF 的法定使命,并通过评估被认为值得支持利用基金会的智力优势和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Mirhosseini其他文献

Distributed angular double-slit interference with pseudo-thermal light
赝热光的分布式角度双缝干涉
  • DOI:
    10.1063/1.4976575
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Gao;Seyed Mohammad Hashemi Rafsanjani;Yiyu Zhou;Zhe Yang;Omar S. Maga-Loaiza;Mohammad Mirhosseini;Jiapeng Zhao;Boshen Gao;Robert W. Boyd
  • 通讯作者:
    Robert W. Boyd
Long-lifetime phonons converse with microwave photons
长寿命声子与微波光子对话
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Mohammad Mirhosseini;A. Bozkurt
  • 通讯作者:
    A. Bozkurt
Quantum-enabled continuous microwave-to-optics frequency conversion
支持量子的连续微波到光学频率转换
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Zhao;William David Chen;Abhishek Kejriwal;Mohammad Mirhosseini
  • 通讯作者:
    Mohammad Mirhosseini

Mohammad Mirhosseini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

宽量子阱双势垒钝化接触机理及杂化全背电极硅基三端叠层电池研究
  • 批准号:
    62304199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自旋阀的硅基自旋量子比特多腔耦合与扩展研究
  • 批准号:
    12304560
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于硅量子点和单原子纳米酶的多模态检测体系的构建及在神经退行性疾病早期诊疗中的应用研究
  • 批准号:
    22374058
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
硅基量子点光频梳激光器及其稳频技术的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于DNA自组装技术构建三维硅量子点纳米探针用于miRNA类肺癌标志物即时检测的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Scalable quantum photonics based on color center integration with angle-etched silicon carbide devices
职业:基于色心集成与角度蚀刻碳化硅器件的可扩展量子光子学
  • 批准号:
    2047564
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Silicon-Photonics High-Resolution Real-Time Probability Apparatus for Quantum Applications
职业:用于量子应用的硅光子高分辨率实时概率装置
  • 批准号:
    2045935
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Electron-phonon processes in gate-defined silicon quantum dots: measurement, control, and applications.
职业:门定义硅量子点中的电子声子过程:测量、控制和应用。
  • 批准号:
    2046428
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Multi-scale Simulations of Bronic Acids in Prteasome Inhibition and Saccharide
布朗酸在蛋白酶体抑制和糖中的多尺度模拟
  • 批准号:
    8837057
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
CAREER: Integrated quantum silicon photonics: Generating high-purity quantum entanglement on a silicon chip
职业:集成量子硅光子学:在硅芯片上产生高纯度量子纠缠
  • 批准号:
    1351697
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了