CAREER: Building and controlling the reactivity of a cobalt-porphyrin cofactor
职业:构建和控制钴卟啉辅因子的反应性
基本信息
- 批准号:2237213
- 负责人:
- 金额:$ 70.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Enzymes are proteins that drive biological reactions. Most work in concert with small molecules that contribute electronic functions or molecular pieces needed for the reaction. These small molecules, referred to as cofactors, often contain one or more metal atoms in their structure. These metals are most often iron, zinc, copper, magnesium, and manganese. An important class of cofactors are called porphyrins. The heme molecule, found in hemoglobin, is a porphyrin that contains an iron atom in its center. This project will involve the production of a cobalt analog of heme. This cobalt-protoporphyrin (CoPPIX) cofactor is expected to drive reactions that have not been previously observed to occur in biological systems. The project will also support the development of a freshman undergraduate research experience course focused on experimental design and analysis. The enzymatic breakdown of plastic will be the model system studied in the combined instruction/lab course. A grand challenge in biocatalysis is to merge traditional synthetic catalysts with biological scaffolds. The resulting enzymes could hypothetically accomplish highly selective versions of known reactions and even enable new transformations. Swapping the identity of a metal cofactor is a highly productive route to generating new reactivity. However, the process of generating artificial metalloenzymes is laborious. The central goal of this project is to expand the reaction scope of biochemistry using a new, fully genetically encoded metallo-cofactor. This effort will attempt to develop a robust, generalizable route to producing cobalt-substituted porphyrin (CoPPIX) in vivo. Once accomplished, one would explore how the chemistry of this cofactor can be controlled to facilitate new-to-nature hydrogen-atom transfer chemistry. This lab has already shown that E. coli BL21 can be coopted to biosynthesize CoPPIX and insert this cofactor into proteins. Three complementary tasks are proposed: improve CoPPIX production through ferrochetalase engineering, explore the reactivity of a putative cobalt-hydride (Co-H) intermediate, and tune the chemoselectivity of enzymes bearing the CoPPIX cofactor to perform new biocatalytic transformations using directed molecular evolution.This project is being jointly supported by the Cellular and Biochemical Engineering (CBE) Program in ENG/CBET and by the Chemistry of Life Processes (CLP) and Chemical Catalysis (CAT) Programs in MPS/CHE.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
酶是驱动生物反应的蛋白质。大多数与小分子协同作用,提供反应所需的电子功能或分子片段。这些小分子被称为辅因子,其结构中通常含有一个或多个金属原子。这些金属最常见的是铁、锌、铜、镁和锰。一类重要的辅因子称为卟啉。血红蛋白中的血红素分子是一种卟啉,其中心含有一个铁原子。该项目将涉及血红素钴类似物的生产。这种钴原卟啉 (CoPPIX) 辅因子有望驱动生物系统中以前未观察到发生的反应。 该项目还将支持开发专注于实验设计和分析的本科新生研究体验课程。 塑料的酶促分解将成为组合教学/实验课程中研究的模型系统。 生物催化的一个巨大挑战是将传统合成催化剂与生物支架相结合。假设产生的酶可以完成已知反应的高度选择性版本,甚至能够实现新的转化。交换金属辅因子的身份是产生新反应性的高效途径。然而,产生人工金属酶的过程是费力的。该项目的中心目标是使用一种新的、完全基因编码的金属辅因子来扩大生物化学的反应范围。这项工作将尝试开发一种稳健的、可推广的体内生产钴取代卟啉(CoPPIX)的途径。一旦完成,人们将探索如何控制这种辅助因子的化学性质,以促进新的氢原子转移化学。该实验室已经表明,大肠杆菌 BL21 可以被用来生物合成 CoPPIX 并将该辅助因子插入蛋白质中。提出了三个互补的任务:通过亚铁螯合酶工程改进 CoPPIX 的生产,探索假定的氢化钴 (Co-H) 中间体的反应性,并调整带有 CoPPIX 辅因子的酶的化学选择性,以利用定向分子进化进行新的生物催化转化。该项目得到了 ENG/CBET 的细胞与生化工程 (CBE) 项目以及 ENG/CBET 的生命过程化学 (CLP) 和化学催化 (CAT) 项目的联合支持。 MPS/CHE。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Buller其他文献
Andrew Buller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
光伏直驱空调系统控制与建筑被动储能协同优化机制的研究
- 批准号:52308091
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理机理与数据驱动协同的能源柔性建筑运行控制策略研究
- 批准号:52308098
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
调度任务驱动的建筑多能源微电网集群双重切换协同控制研究
- 批准号:62371032
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
民用建筑室内空气质量控制若干关键科学问题研究
- 批准号:52378102
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
内置耗能构件TLD-高层建筑风振控制若干关键问题研究
- 批准号:52378497
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Building the framework of controlling a pandemic based on mathematical epidemiology and evolutionary game theory
基于数学流行病学和进化博弈论构建疫情控制框架
- 批准号:
22KF0303 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ExpandQISE: Track 1: Understanding and controlling decoherence in hybrid spin qubit-magnon systems for advancing education and building workforce in emerging quantum technologies
ExpandQISE:轨道 1:理解和控制混合自旋量子位-磁振子系统中的退相干,以推进新兴量子技术的教育和培养劳动力
- 批准号:
2328822 - 财政年份:2023
- 资助金额:
$ 70.88万 - 项目类别:
Standard Grant
Controlling Stem Cell Fate through Computational Modeling
通过计算模型控制干细胞的命运
- 批准号:
9166324 - 财政年份:2016
- 资助金额:
$ 70.88万 - 项目类别:
Degradation mechanism of building coating materials using accelerated UV exposure in controlling degradation factors
利用加速紫外线照射控制降解因素的建筑涂料降解机理
- 批准号:
26630253 - 财政年份:2014
- 资助金额:
$ 70.88万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Deciphering the gene regulatory network controlling vertebrate endodermal fates
破译控制脊椎动物内胚层命运的基因调控网络
- 批准号:
9256494 - 财政年份:2013
- 资助金额:
$ 70.88万 - 项目类别: