CAREER: Tunable Graphene Microdevices for Multiplexed Detection of Biomolecules Beyond Diffusion Limit

职业:可调谐石墨烯微器件,用于超越扩散极限的生物分子的多重检测

基本信息

项目摘要

Existing and emerging electrochemical biosensors can achieve high sensitivity, specificity, and stability in detecting biochemical molecules. However, label-free and tunable sensors for detecting multiple biomolecules (multiplexed detection) with high sensitivity and short measurement time are still beyond maturity. The goal of this program is to lay the foundations for engineering novel graphene-based biosensors to address these needs with biogenic amine neurotransmitters as testbed. The research component of this CAREER program will significantly advance the field of electrochemical sensing by 1) enhancing our understanding of fundamental questions involving convergence of material-device-readout knobs in design of electrochemical sensors, revealing the effect of interface engineering and electrical gating on tuning sensor response, and elucidating the impact of multimodal sensing and data fusion on enhancing accuracy, specificity, and reliability, and 2) utilizing this knowledge in innovating a new class of reliable, multiplexed, and tunable devices. The research outcomes will provide a foundation for educational activities focused on training graduate and undergraduate students, including minorities and underrepresented groups. Multiple initiatives are integrated to increase public engagement in biosensing science and technology, including creating new laboratory modules for a biosensor-themed course, a summer workshop for teachers from districts underrepresented in STEM, and a summer camp for pre-college female students.This program aims at creating tunable and multiplexed electrochemical biosensors with high sensitivity, specificity and rapid response by developing new data-fused hybrid droplet-graphene microdevices. This CAREER program integrates both experimental and modeling investigations which include 1) elucidating the correlation between plasma-assisted functionalization of graphene and analyte-device interface engineering to enhance sensitivity and tune specificity of graphene microdevice array; 2) developing a learning-based multimodal electrochemical system for reliable classification of bioanalytes and multiplexing; 3) understanding the fundamental limits of sensitivity versus response time in a time-evolving system; 4) elucidating the fundamental mechanisms for electrical gating as an in-situ knob to tune the reaction kinetics at the graphene-analyte interface and hence the sensor response; and 5) demonstrating the application of this system with a well-studied drug screening neurosecretion cell model. This project is anticipated to have a long-term impact on biosensor engineering by elucidating how interface and device engineering influence detection limit and response time in time-evolving electrochemical systems and how convergence with multimodal readout can significantly enhance accuracy, specificity, and reliability of label-free diagnostics. In addition, the outcomes will advance utilization of the growing field of 2D material functionalization and devices in diagnostics, bioelectronics, and life science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现有和新兴的电化学生物传感器可以在检测生化分子时实现高灵敏度、特异性和稳定性。然而,用于检测多个生物分子(多重检测)、具有高灵敏度和短测量时间的无标记和可调谐传感器仍然不够成熟。该计划的目标是为工程新型石墨烯生物传感器奠定基础,以生物胺神经递质作为试验台来满足这些需求。该职业计划的研究部分将通过以下方式显着推进电化学传感领域:1)增强我们对涉及电化学传感器设计中材料-设备-读出旋钮融合的基本问题的理解,揭示界面工程和电选通对调谐的影响传感器响应,并阐明多模态传感和数据融合对提高准确性、特异性和可靠性的影响,2) 利用这些知识创新新型可靠、多路复用和可调谐设备。研究成果将为专注于培训研究生和本科生(包括少数族裔和代表性不足群体)的教育活动奠定基础。整合多项举措来增加公众对生物传感科学和技术的参与,包括为生物传感器主题课程创建新的实验室模块、为 STEM 代表性不足地区的教师举办夏季研讨会,以及为大学预科女学生举办夏令营。该计划旨在通过开发新的数据融合混合液滴-石墨烯微器件来创建具有高灵敏度、特异性和快速响应的可调谐和多重电化学生物传感器。该职业计划整合了实验和建模研究,其中包括:1)阐明石墨烯的等离子体辅助功能化与分析物-器件界面工程之间的相关性,以提高石墨烯微器件阵列的灵敏度和调整特异性; 2) 开发基于学习的多模式电化学系统,用于生物分析物的可靠分类和多重分析; 3) 了解随时间演化的系统中灵敏度与响应时间的基本限制; 4) 阐明电选通作为原位旋钮的基本机制,以调节石墨烯-分析物界面的反应动力学,从而调节传感器响应; 5) 展示该系统与经过充分研究的药物筛选神经分泌细胞模型的应用。该项目预计将对生物传感器工程产生长期影响,阐明接口和设备工程如何影响随时间演变的电化学系统中的检测极限和响应时间,以及与多模态读数的融合如何显着提高标签的准确性、特异性和可靠性-免费诊断。此外,研究结果将促进诊断、生物电子和生命科学领域不断发展的二维材料功能化和设备领域的利用。该奖项反映了 NSF 的法定使命,并通过利用基金会的智力优势和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Facile Functionalization of Graphene to Tune Response of Printed Electrochemical Sensors to Neurotransmitters
石墨烯的简便功能化可调节印刷电化学传感器对神经递质的响应
  • DOI:
    10.1149/ma2023-01532651mtgabs
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kammarchedu, Vinay;Butler, Derrick;Khamsi, Pouya Soltan;Ebrahimi, Aida
  • 通讯作者:
    Ebrahimi, Aida
Solution-processed graphene films for electrochemical monitoring of extracellular nitric oxide released by breast cancer cells
  • DOI:
    10.1088/2053-1583/ad1251
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Butler,Derrick;Sankhe,Chinmay S.;Ebrahimi,Aida
  • 通讯作者:
    Ebrahimi,Aida
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seyedehaida Ebrahimi其他文献

Seyedehaida Ebrahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

石墨烯可调谐中红外光电探测增效机制及其器件制备研究
  • 批准号:
    62371095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于石墨烯-TMDs异质结微腔的可调谐光电探测器研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超结构铁电畴调控石墨烯等离子激元的可调谐中红外光电探测器研究
  • 批准号:
    62201096
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于石墨烯的可调谐太赫兹探测器
  • 批准号:
    U1930105
  • 批准年份:
    2019
  • 资助金额:
    48.0 万元
  • 项目类别:
    联合基金项目
基于二维材料量子电容器的电致可调谐振电路
  • 批准号:
    61904077
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
  • 批准号:
    2339623
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Tunable Graphene Microelectrodes for Real-time Biological Sensing
职业:用于实时生物传感的可调谐石墨烯微电极
  • 批准号:
    2143520
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Narrow Graphene Nanoribbons with Tunable Electronic Properties
职业:具有可调电子特性的窄石墨烯纳米带
  • 批准号:
    1455330
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Electroactive Graphene-Polymer System with Extreme Actuation and Tunable Properties
职业:具有极端驱动和可调特性的电活性石墨烯聚合物系统
  • 批准号:
    1532136
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Electroactive Graphene-Polymer System with Extreme Actuation and Tunable Properties
职业:具有极端驱动和可调特性的电活性石墨烯聚合物系统
  • 批准号:
    1253495
  • 财政年份:
    2013
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了