CAREER: Tunable Graphene Microelectrodes for Real-time Biological Sensing
职业:用于实时生物传感的可调谐石墨烯微电极
基本信息
- 批准号:2143520
- 负责人:
- 金额:$ 67.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).With the support of the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry, Ashley Ross of the University of Cincinnati is studying how graphene, a single layer of carbon atoms arranged in a two-dimensional honeycomb lattice, can be used to sense neurochemicals. By controlling the direction of the carbon atoms in the honeycomb and placing different kinds of atoms on the surface of the graphene, Dr. Ross and their research team will work toward making electrodes that can electrically communicate in an effective way with chemicals that are key to understanding the nervous system. This new approach with graphene electrodes offers the possibility of systematically studying how tuning the orientation of the honeycomb edge and the surface chemistry of graphene can be used to make electrodes capable of sensing neurochemicals better than methods known for 40 years. Such tunable electrodes are expected to offer extremely rapid sensing of changes in the amounts of neurochemicals within very tiny areas of the body, which would be very valuable to understanding the way messages are sent and received by the nervous system. This new route to making tailored and rapid sensing of neurochemicals may shed light on the way in which a variety of cells are given and receive instructions to initiate, stop, or regulate biological responses. Importantly, the new graphene fiber electrodes have the potential to give a glimpse into the immune response and its programming by neurochemicals, by detecting fast changes in their amounts in whole organs. The project is anticipated to have a long-term impact on sensing by providing new measurement tools and an understanding of how the surface of the electrode and the structure of neurochemicals influence their detection. The impact of the project is to be broadened by building on an on-line discussion platform and seminar series, titled “Analytical Chemistry Diversity Colloquium”, to increase engagement and to nationally promote the work of underrepresented scientists in analytical chemistry. In addition, this project will develop multidisciplinary and discussion-based modules to be incorporated into courses to improve scientific literacy, create an environment of inclusion, and excite students from diverse backgrounds about analytical chemistry. There is a current knowledge gap in electrochemical sensing about enabling correlation and prediction of how changes in electrode structure and chemistry impacts the interface between solution-phase analytes having different structures and the electrode surface. The ability to precisely control and correlate how specific chemical and structural properties of the electrode impact detection of electroactive biomolecules will significantly influence our understanding of electrode-analyte interactions to enable exquisitely designed electrode surfaces for improved real-time biological sensing. In this project, we will advance knowledge of analyte-electrode interactions with fast-scan cyclic voltammetry because it is the primary electrochemical method used to probe real-time neurochemical signaling; therefore, this approach will have a major impact on dynamic neurochemical sensing. This project will focus on synthesizing and characterizing tunable graphene fiber microelectrodes to measure how carbon surface orientation and alignment, functionalization, surface energy, and three-dimensional structure impact electrochemical detection of neurochemicals. This proposal will ultimately enable expansion of real-time neurochemical sensing to beyond the brain to study nervous system regulation of immunity, communication along the gut-brain axis, and more, by providing significantly improved electrodes that enable ultra-sensitive and high-temporal-resolution measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。在化学测量和成像(CMI)化学部的支持下,辛辛那提大学的阿什利·罗斯(Ashley Ross)在化学划分中进行了研究,而石墨烯是如何在两层蜂蜜蜂蜜中安排的石墨烯,是如何在两层碳原子中安排的。通过控制蜂窝中碳原子的方向并将不同种类的原子放置在石墨烯表面上,罗斯博士及其研究团队将致力于制造电子产品,该电子设备可以与理解神经系统的关键化学物质以有效的方式进行电气通信。这种使用石墨烯电极的新方法可以系统地研究如何调整蜂窝边缘的方向和石墨烯的表面化学方法,以使电子学能够比40年已知的方法更好地感知神经化学物质。预计这种可调电极将对身体非常小的区域内神经化学物质的变化的变化具有极快的敏感性,这对于理解神经系统发送和接收消息的方式非常有价值。这一新的途径是使神经化学物质的量身定制和快速敏感性揭示给出各种细胞并接收指令以启动,停止或调节生物学反应的方式。重要的是,新的石墨烯纤维电子具有通过检测整个器官中其量的快速变化来瞥见神经化学物质及其编程的潜力。预计该项目通过提供新的测量工具以及对电气表面和神经化学的结构如何影响其检测而对灵敏度产生长期影响。该项目的影响是通过在在线讨论平台和SEMIAR系列(标题为“分析化学多样性座谈会”)上建立来扩大该项目的影响,以增加参与度,并在全国范围内促进分析化学中代表性不足的科学家的工作。此外,该项目将开发多学科和基于讨论的模块,并将其纳入课程中,以提高科学素养,创造包容性的环境,并激发来自分析化学的潜水员背景的学生。电化学敏感性存在当前的知识差距,以实现电极结构和化学变化如何影响具有不同结构和电极表面的溶液相分析物之间的界面。精确控制和相关的电极影响检测电极生物分子的特定化学和结构特性的能力将显着影响我们对电极 - 分析物相互作用的理解,以使精确设计的电极表面能够改善实时生物敏感性。在该项目中,我们将提高与快速扫描环状伏安法的分析物 - 电极相互作用的了解,因为它是用于探测实时神经化学信号传导的主要电化学方法。因此,这种方法将对动态神经化学传感器产生重大影响。该项目将集中于合成和表征可调石墨烯纤维微电极,以测量碳表面方向和比对,功能化,表面能和三维结构如何影响神经化学的电化学检测。该建议最终将通过提供明显改进的电极来实现超敏感和高激度的分辨率测量,从而扩大对大脑超越大脑的实时神经化学敏感性的扩展,以研究神经系统的调节,沿肠道轴的沟通,沿肠道轴的沟通以及更多,这些奖励能够启用超敏感的和高激烈的分辨率测量。影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graphene oxide fiber microelectrodes with controlled sheet alignment for sensitive neurotransmitter detection
具有受控薄片排列的氧化石墨烯纤维微电极,用于灵敏的神经递质检测
- DOI:10.1039/d3nr02879h
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Jarosova, Romana;Ostertag, Blaise J.;Ross, Ashley E.
- 通讯作者:Ross, Ashley E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashley Ross其他文献
Enhancement and Implementation of a Health Information Technology Module to Improve the Discrete Capture of Cancer Staging in a Diverse Regional Health System
增强和实施健康信息技术模块,以改善不同区域卫生系统中癌症分期的离散捕获
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4
- 作者:
Macy B Walesa;Ashley Denny;Alpa Patel;Megan Mulcahy;S. Kircher;Christopher George;Dean Tsarwhas;Ashley Ross;Leonidas C Platanias;V. Poylin;A. Yang;C. Barnard;K. Bilimoria;R. Merkow - 通讯作者:
R. Merkow
MP55-18 RACE IMPACTS ETS FAMILY TRANSCRIPTION FACTOR EXPRESSION IN PROSTATE CANCER: DATA FROM A MULTI-INSTITUTIONAL COHORT
- DOI:
10.1016/j.juro.2015.02.2061 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Farzana Faisal;Debasish Sundi;Ashley Ross;Eric Klein;Robert Den;Adam Dicker;Voleak Choeurng;Nicholas Erho;Mohammed Alshalalfa;Elai Davicioni;Tamara Lotan;Edward Schaeffer - 通讯作者:
Edward Schaeffer
MP09-12 FREEDOM FROM BIOCHEMICAL RECURRENCE AND METASTASIS IN MEN WITH VERY HIGH RISK PROSTATE CANCER TREATED AT A TERTIARY CENTER: VALIDATION OF A NEW RISK STRATUM
- DOI:
10.1016/j.juro.2016.02.2299 - 发表时间:
2016-04-01 - 期刊:
- 影响因子:
- 作者:
Debasish Sundi;Jeffrey Tosoian;Mary Achim;John Davis;Curtis Pettaway;John Ward;Surena Matin;Louis Pisters;Edward Schaeffer;Ashley Ross;Brian Chapin - 通讯作者:
Brian Chapin
MP30-19 PROPENSITY SCORE COMPARATIVE MATCHING OF ONCOLOGICAL AND FUNCTIONAL OUTCOMES OF PRIMARY FOCAL VS WHOLE GLAND CRYOTHERAPY FOR PROGNOSTIC GRADE GROUPS (PGG) 4 AND 5 PROSTATE CANCER
- DOI:
10.1016/j.juro.2018.02.960 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Ahmed Elshafei;Thomas Polascik;Ashley Ross;Robert Given;Asmaa Hatem;Michael Cher;Jim C. Hu;J. Stephen Jones - 通讯作者:
J. Stephen Jones
MOLECULAR CORRELATES WITH PSMA EXPRESSION IN PRIMARY PROSTATE CANCER
- DOI:
10.1016/j.urolonc.2024.01.238 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:
- 作者:
Adam B. Weiner;Nicholas Wang;Raag Agrawal;Ida Sonni;Luca Valle;Amar Kishan;John Shen;Matthew Rettig;Jeremie Calais;Paul Boutros;Robert Reiter;Eric Li;Ashley Ross;Edward Scaheffer;JJ Zhang;Elai Davicioni - 通讯作者:
Elai Davicioni
Ashley Ross的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
石墨烯可调谐中红外光电探测增效机制及其器件制备研究
- 批准号:62371095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于石墨烯-TMDs异质结微腔的可调谐光电探测器研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超结构铁电畴调控石墨烯等离子激元的可调谐中红外光电探测器研究
- 批准号:62201096
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
可调控高非线性硅基石墨烯多模狭缝波导及其光逻辑运算研究
- 批准号:62205308
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于石墨烯-TMDs异质结微腔的可调谐光电探测器研究
- 批准号:62204242
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Designing and Probing Emergent Phases with Tunable Magnons in Graphene
职业:利用石墨烯中的可调磁振子设计和探测涌现相
- 批准号:
2339623 - 财政年份:2024
- 资助金额:
$ 67.5万 - 项目类别:
Continuing Grant
CAREER: Tunable Graphene Microdevices for Multiplexed Detection of Biomolecules Beyond Diffusion Limit
职业:可调谐石墨烯微器件,用于超越扩散极限的生物分子的多重检测
- 批准号:
2236997 - 财政年份:2023
- 资助金额:
$ 67.5万 - 项目类别:
Continuing Grant
CAREER: Narrow Graphene Nanoribbons with Tunable Electronic Properties
职业:具有可调电子特性的窄石墨烯纳米带
- 批准号:
1455330 - 财政年份:2015
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
CAREER: Electroactive Graphene-Polymer System with Extreme Actuation and Tunable Properties
职业:具有极端驱动和可调特性的电活性石墨烯聚合物系统
- 批准号:
1532136 - 财政年份:2014
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant
CAREER: Electroactive Graphene-Polymer System with Extreme Actuation and Tunable Properties
职业:具有极端驱动和可调特性的电活性石墨烯聚合物系统
- 批准号:
1253495 - 财政年份:2013
- 资助金额:
$ 67.5万 - 项目类别:
Standard Grant