Critical Phenomena in Coherent Structure Formation
相干结构形成的关键现象
基本信息
- 批准号:2205663
- 负责人:
- 金额:$ 28.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large complex dynamical systems often self-organize into simple coherent behavior. Describing, analyzing, and computing the dynamics of these self-organized structures is at the center of understanding processes ranging from crystallization, self-assembly, or material hardening, to the emergence of patterns and function in living organisms. The principal investigator (PI) studies the role of coherent structures both in organizing the dynamics of systems through the selection of patterns and shape, but also in their role for validating models through quantitative predictions. The first part of the project is concerned with invasion processes, where a new structure propagates in the system after a sudden change in parameters. This invasion process is poorly understood and computationally challenging. The PI will develop new analytical and computational tools to systematically analyze, predict, and thus validate models. The second part of the project is concerned with point defects that arise in soft matter. Point defects both organize the system dynamics, but also present challenges to macroscopic, homogenized descriptions of large systems. The proposed work further develops analytical and computational methods that aim at a fine description of the shape of the core of point defects and their effect on the medium far away from the core. Graduate and undergraduate students will be engaged in the research of the project.The PI will analyze invasion fronts and point defects. Invasion fronts describe the propagation into an unstable state across many scientific areas, from material science to ecology and epidemiology. Propagation speeds and the novel state created in the wake of the invasion process can often be well predicted from linear analysis at the unstable state, through a marginal pointwise stability analysis. The PI will first develop novel computational tools for the associated linear questions, complemented by a rigorous convergence analysis. In a second step, the PI will addresse the validity of these linear predictions in nonlinear systems, in particular questions associated with the marginal stability conjecture that postulates that critical, only marginally stable fronts are selected in the invasion process. A second part of the proposal studies dislocations in striped phases and creases in elastic media. In both situations, analysis of the existence of these point defects will yield a deeper understanding of the role of the core of the defect in the large-scale deformation of the medium. The interaction between core and farfield is analyzed using analytical, perturbative tools and computational methods that rely on rigorous approximations of unbounded by finite-size domains.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大型复杂动力系统通常会自组织成简单的连贯行为。描述、分析和计算这些自组织结构的动力学是理解从结晶、自组装或材料硬化到生物体模式和功能的出现等过程的核心。首席研究员(PI)研究相干结构在通过选择模式和形状来组织系统动力学方面的作用,以及它们通过定量预测验证模型的作用。该项目的第一部分涉及入侵过程,在参数突然变化后,新的结构会在系统中传播。人们对这种入侵过程知之甚少,并且计算上具有挑战性。 PI 将开发新的分析和计算工具来系统地分析、预测并验证模型。该项目的第二部分涉及软物质中出现的点缺陷。点缺陷既组织了系统动力学,也对大型系统的宏观、均匀描述提出了挑战。所提出的工作进一步开发了分析和计算方法,旨在精细描述点缺陷核心的形状及其对远离核心的介质的影响。研究生和本科生将参与该项目的研究。PI将分析入侵前沿和点缺陷。入侵前沿描述了从材料科学到生态学和流行病学的许多科学领域传播到不稳定状态的情况。通过边际逐点稳定性分析,通常可以从不稳定状态的线性分析中很好地预测传播速度和入侵过程后创建的新状态。 PI 将首先为相关的线性问题开发新颖的计算工具,并辅之以严格的收敛分析。第二步,PI 将解决非线性系统中这些线性预测的有效性,特别是与边际稳定性猜想相关的问题,该猜想假设在入侵过程中仅选择关键的、仅边际稳定的前沿。该提案的第二部分研究条纹相中的位错和弹性介质中的折痕。在这两种情况下,对这些点缺陷的存在进行分析将有助于更深入地了解缺陷核心在介质大规模变形中的作用。使用分析、微扰工具和计算方法来分析核心和远场之间的相互作用,这些工具和计算方法依赖于有限大小域的无界严格近似。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Coherent structures in nonlocal systems --- functional analytic tools
非局部系统中的相干结构——函数分析工具
- DOI:10.48550/arxiv.2206.11921
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Cannon, Olivia;Scheel, Arnd
- 通讯作者:Scheel, Arnd
Pushed-to-Pulled Front Transitions: Continuation, Speed Scalings, and Hidden Monotonicty
推拉前端转换:延续、速度缩放和隐藏单调性
- DOI:10.1007/s00332-023-09957-3
- 发表时间:2023-12
- 期刊:
- 影响因子:3
- 作者:Avery, Montie;Holzer, Matt;Scheel, Arnd
- 通讯作者:Scheel, Arnd
Fronts in the Wake of a Parameter Ramp: Slow Passage through Pitchfork and Fold Bifurcations
参数斜坡之后的前沿:缓慢穿过干草叉和折叠分叉
- DOI:10.1137/22m1541812
- 发表时间:2023-09
- 期刊:
- 影响因子:2.1
- 作者:Goh, Ryan;Kaper, Tasso J.;Scheel, Arnd;Vo, Theodore
- 通讯作者:Vo, Theodore
Nonlinear Eigenvalue Methods for Linear Pointwise Stability of Nonlinear Waves
非线性波线性逐点稳定性的非线性特征值方法
- DOI:10.1137/22m1492969
- 发表时间:2023-04
- 期刊:
- 影响因子:2.9
- 作者:Scheel; Arnd
- 通讯作者:Arnd
Viscous shocks and long-time behavior of scalar conservation laws
粘性冲击和标量守恒定律的长期行为
- DOI:10.3934/cpaa.2023119
- 发表时间:2023-06-23
- 期刊:
- 影响因子:1
- 作者:T. Gallay;A. Scheel
- 通讯作者:A. Scheel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arnd Scheel其他文献
Arnd Scheel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arnd Scheel', 18)}}的其他基金
Pattern Selection: Growth, Fronts, and Defects
模式选择:生长、前沿和缺陷
- 批准号:
1612441 - 财政年份:2016
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Pattern and wavenumber selection in the wake of fronts
锋面后的模式和波数选择
- 批准号:
1311740 - 财政年份:2013
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Dynamics near Turing patterns: modulations, bifurcations, and defects
图灵模式附近的动力学:调制、分叉和缺陷
- 批准号:
0806614 - 财政年份:2008
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Coherent Structures: Interaction and Propagation of Defects
相干结构:缺陷的相互作用和传播
- 批准号:
0504271 - 财政年份:2005
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
Collaborative Research: Absolute and essential instabilities in spatially extended systems
合作研究:空间扩展系统中的绝对和本质不稳定性
- 批准号:
0203301 - 财政年份:2002
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
相似国自然基金
光机械系统中量子随机共振现象的相干反馈控制及其应用
- 批准号:
- 批准年份:2019
- 资助金额:42 万元
- 项目类别:地区科学基金项目
低维半导体—贵金属耦合杂化体系中超快光学现象及量子相干控制
- 批准号:11774054
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
量子热力学循环中的相干控制
- 批准号:11705008
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
量子相干调控下量子限制结构的非线性光学现象的理论研究
- 批准号:11775190
- 批准年份:2017
- 资助金额:58.0 万元
- 项目类别:面上项目
飞秒瞬态光谱测量和相干控制研究新型光敏剂咔咯能量转移和电荷转移过程
- 批准号:61475196
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
相似海外基金
Spin-dependent quantum coherent phenomena in ferromagnet/layered superconductor hybrids
铁磁体/层状超导体混合体中自旋相关的量子相干现象
- 批准号:
19K05244 - 财政年份:2019
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Field-Theoretic Simulations: Polarization Phenomena and Coherent States
场论模拟:偏振现象和相干态
- 批准号:
1822215 - 财政年份:2018
- 资助金额:
$ 28.5万 - 项目类别:
Standard Grant
One-shot interferometric dynamic light scattering technique to analyaze space-variant diffusion phenomena
用于分析空变扩散现象的单次干涉动态光散射技术
- 批准号:
24360157 - 财政年份:2012
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Ultrafast Magnetism in Complex Materials: Coherent and Cooperative Phenomena
职业:复杂材料中的超快磁性:相干和协作现象
- 批准号:
1055352 - 财政年份:2011
- 资助金额:
$ 28.5万 - 项目类别:
Continuing Grant
Effects of resonant coupling on terahertz-range coherent phenomena in semiconductor superlattices
谐振耦合对半导体超晶格太赫兹范围相干现象的影响
- 批准号:
22740203 - 财政年份:2010
- 资助金额:
$ 28.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)