Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials

合作研究:探索超软夹杂物在纤维材料力学中的作用

基本信息

  • 批准号:
    2235856
  • 负责人:
  • 金额:
    $ 42.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

In nature, fibrous materials such as biological tissues can display adaptive behaviors. These include tunable density, stiffness, and permeability, which allow them to carry mechanical loads, respond to environmental stimuli, and heal wounds. These behaviors are achieved through ultra-soft inclusions like cells and platelets, and their interactions with the surrounding fibrous network, collectively lending their host materials specialized functions. Mimicking such functions in engineered materials requires a deep understanding of the mechanical role of ultra-soft inclusions in fiber networks at large deformations. This award supports fundamental research on how ultra-soft inclusions interact with a network of fibers and how these small-scale interactions affect the overall deformation behavior of the host material. The findings from this investigation will not only provide new insights into the design and fabrication of bio-inspired, adaptive materials for diverse applications in smart textiles and wearable technology, wound healing, filtration membranes, and soft robotics, but it will also lead to a better understanding of physiological and pathological processes in biological tissues that are driven by ultra-soft inclusions in the form of cells and cell-like particles, consequently advancing the national health, prosperity, and welfare. In addition to benefitting the broader scientific community, this work will also support undergraduate and graduate education through new, interdisciplinary class modules, research opportunities, and a trans-institutional visitation program. An additional broader impact will be through an education outreach program aimed at middle school students in collaboration with a Department of Defense-affiliated STEM youth program in Austin, TX, inspiring the students to recognize the universality of many engineering principles spanning from biomedical engineering to civil and mechanical engineering.Micron-sized, ultra-soft inclusions in fiber networks are ubiquitous in natural materials and play a critical role in the overall mechanical properties despite their small size. This award aims to understand how controlled microscale, local and non-local interactions of highly deformable inclusions with semi-flexible fiber networks lead to emergent behaviors at macroscales in engineered materials. The focus is on polymeric (fibrous) host materials for their importance in both engineering applications and nature. Computational approaches combine surface-enriched numerical tools accounting for bulk and surface adhesion, elastocapillary effects, soft solid-beam contact phenomena, and data-driven homogenization to predict the mechanics of polymer-particle composites. Critically, this project develops a controllable, experimental microgel platform to make and study ultra-soft inclusions with highly tunable mechanical properties. An iterative feedback loop between theory, computations, and micro- and macroscale experiments using the microgel material platform is central to the project for validating predictions and informing the model development. Ultimately, this project will provide a quantitative knowledge base and a microgel synthesis platform to demonstrate that the material design space of composites with ultra-soft inclusions can be precisely tuned through control of the nonlinear local/nonlocal interactions between ultra-soft inclusions and fibrous networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中,生物组织等纤维材料可以表现出适应性行为。其中包括可调节的密度、刚度和渗透性,使它们能够承载机械负荷、对环境刺激做出反应并治愈伤口。这些行为是通过细胞和血小板等超软内含物以及它们与周围纤维网络的相互作用来实现的,共同赋予它们的宿主材料特殊的功能。在工程材料中模拟此类功能需要深入了解纤维网络中超软夹杂物在大变形下的机械作用。该奖项支持关于超软夹杂物如何与纤维网络相互作用以及这些小尺度相互作用如何影响主体材料的整体变形行为的基础研究。这项调查的结果不仅将为智能纺织品和可穿戴技术、伤口愈合、过滤膜和软机器人等多种应用的仿生自适应材料的设计和制造提供新的见解,而且还将带来更好地了解生物组织中由细胞和细胞样颗粒形式的超软内含物驱动的生理和病理过程,从而促进国民健康、繁荣和福利。除了造福更广泛的科学界外,这项工作还将通过新的跨学科课程模块、研究机会和跨机构访问计划来支持本科生和研究生教育。与德克萨斯州奥斯汀国防部附属的 STEM 青年项目合作,将通过针对中学生的教育推广计划产生更广泛的影响,激励学生认识到从生物医学工程到土木工程等许多工程原理的普遍性纤维网络中的微米级超软夹杂物在天然材料中普遍存在,尽管尺寸很小,但对整体机械性能起着至关重要的作用。该奖项旨在了解高度可变形夹杂物与半柔性纤维网络的受控微尺度、局部和非局部相互作用如何导致工程材料中宏观尺度的突现行为。重点是聚合物(纤维)主体材料,因为它们在工程应用和自然中都很重要。计算方法结合了表面丰富的数值工具,解释了体积和表面粘附、弹性毛细管效应、软固体梁接触现象和数据驱动的均质化,以预测聚合物颗粒复合材料的力学性能。至关重要的是,该项目开发了一个可控的实验性微凝胶平台,用于制造和研究具有高度可调机械性能的超软夹杂物。使用微凝胶材料平台的理论、计算以及微观和宏观实验之间的迭代反馈循环是该项目验证预测和为模型开发提供信息的核心。最终,该项目将提供定量知识库和微凝胶合成平台,以证明可以通过控制超软夹杂物和纤维网络之间的非线性局部/非局部相互作用来精确调整具有超软夹杂物的复合材料的材料设计空间该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The mechanics of embedded fiber networks
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Berkin Dortdivanlioglu其他文献

Berkin Dortdivanlioglu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Berkin Dortdivanlioglu', 18)}}的其他基金

DMREF/Collaborative Research: Computationally Driven Design of Synthetic Tissue-Like Multifunctional Materials
DMREF/合作研究:合成组织类多功能材料的计算驱动设计
  • 批准号:
    2119716
  • 财政年份:
    2021
  • 资助金额:
    $ 42.46万
  • 项目类别:
    Standard Grant

相似国自然基金

氟-18标记咪唑啉I2受体显像剂的研究及其在AD早期诊断中的应用探索
  • 批准号:
    22306014
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
染色质重塑子对儿童智力发育障碍的机制研究及诊断标志物探索
  • 批准号:
    82330049
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
基于脑连接组学探索卒中后慢性失语症分类及针刺干预疗效预测的神经影像标记物研究
  • 批准号:
    82374555
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
法医系谱学亲缘关系精细刻画探索研究
  • 批准号:
    82371897
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
高管团队深层特征探索研究:认知、关系、价值观
  • 批准号:
    72372001
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
  • 批准号:
    2335411
  • 财政年份:
    2024
  • 资助金额:
    $ 42.46万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 42.46万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 42.46万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 42.46万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 42.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了