FuSe-TG: The Future of Semiconductor Technologies for Computing through Device-Architecture-Application Co-Design
FuSe-TG:通过设备-架构-应用协同设计进行计算的半导体技术的未来
基本信息
- 批准号:2235329
- 负责人:
- 金额:$ 29.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A 2020 issue of Massachusetts Institute of Technology’s Tech Review read “[Moore’s law] has fueled prosperity of the last 50 years. But the end is now in sight.” However, this latter conclusion can be debated. Historically, exponential growth in semiconductors was achieved through two-dimensional (2D) miniaturization of devices (transistors, memory, and wires) to pack more components in the same chip area and achieve lower cost per function. Indeed, we are now reaching the physical limits of this 2D scaling paradigm. However, alternative approaches will trigger a seismic shift to reinvigorate the US semiconductor economy. This project will explore, identify, and map out the possible paths that lie ahead through partnerships among universities and industry/industrial research leaders in semiconductors, through educational efforts to translate new knowledge into the educational pipeline and semiconductor workforce, and through piloting new collaboration methods to enable lab-to-fab translation more readily with robust inputs from industry experts. This teaming grant will thus break new grounds for the future of semiconductors for domain-specific computing. The longer-term goal is to create national impact on research, education, and commercialization by encouraging students to follow a career path in semiconductors near national fab facilities. This is planned through multiple catalysts, e.g., a pilot program for lab and fab experiences for community college students, co-design challenges etc.In the past two decades, it has become increasingly untenable to create architectures and device technologies independent of one another because there are intertwined dependencies across the abstraction boundaries. In addition, because of the extreme energy efficiency demands of future systems, architectures and device technologies must be driven by the specific application domains at hand. Thus, the focus of this project is device-architecture-application co-design. Building in the third dimension (3D, like a high-rise), with ultra-dense vertical connectivity between 3D layers, could significantly increase the number of devices packed on a piece of chip real estate in a scalable manner for significant benefits in energy and throughput, as, e.g., used by the Stanford Nano-Engineered Computing Systems Technology (N3XT) 3D approach. Multiple N3XT 3D chips are to be integrated through a continuum of chip stacking-/interposer-/wafer-level assembly/ integration. The foundation for this teaming activities will be the MOnolithic Stacked, Assembled IC (MOSAIC) N3XT 3D concept. Rather than relying solely on silicon-based transistors to perform all desired functions, heterogeneous materials and customized device structures optimally designed to perform diverse/distinct functions, i.e., domain-specific device technologies, will be used. The project will explore new domain-specific architectures (e.g., targeting AI deep neural nets, augmented reality/virtual reality, and graph analytics) uniquely enabled by the technology concepts, new Electronic Design Automation tools, and new open-source frameworks for device-architecture-application co-design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
麻省理工学院 2020 年的《技术评论》写道:“[摩尔定律]推动了过去 50 年的繁荣,但现在已经看到了终结。”然而,从历史上看,后一个结论是有争议的。通过器件(晶体管、存储器和电线)的二维 (2D) 小型化来实现,以在同一芯片面积中封装更多组件,并降低每项功能的成本。事实上,我们现在已经达到了这一点的物理极限。 2D 缩放范式。然而,替代方法将引发一场巨大的转变,以重振美国半导体经济。该项目将通过大学和半导体行业/工业研究领导者之间的合作来探索、确定和规划未来的可能路径。教育将新知识转化为教育工作渠道和半导体劳动力,并通过试点新的协作方法,在行业专家的大力投入下更容易地实现实验室到晶圆厂的转化,因此,这项团队资助将为半导体的未来开辟新天地。为了长期目标是通过鼓励学生在国家晶圆厂附近走上半导体职业道路,对研究、教育和商业化产生全国影响。这是通过多种催化剂进行规划的,例如试点计划。社区学院学生的实验室和工厂经验、协同设计挑战等。在过去的二十年中,创建彼此独立的架构和设备技术变得越来越站不住脚,因为跨抽象边界存在相互交织的依赖关系。的未来系统、架构和设备技术的极端能源效率需求必须由当前的特定应用领域驱动,因此,该项目的重点是三维(3D,如三维)的设备-架构-应用协同设计。高层建筑),在 3D 层之间具有超密集的垂直连接,可以以可扩展的方式显着增加一块芯片上封装的设备数量,从而在能源和吞吐量方面取得显着优势,例如斯坦福大学所使用的纳米工程计算系统技术 (N3XT) 3D 方法将通过连续的芯片堆叠/中介层/晶圆级组装/集成来集成多个 N3XT 3D 芯片。组装 IC (MOSAIC) N3XT 3D 概念不是仅仅依靠硅基晶体管来最佳地执行所有所需功能、异质材料和定制器件结构。该项目将使用旨在执行不同/不同功能的特定领域的设备技术(例如,针对人工智能深度神经网络、增强现实/虚拟现实和图形分析)。通过技术概念、新的电子设计自动化工具以及用于设备-架构-应用协同设计的新开源框架。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhasish Mitra其他文献
Dendrite-inspired Computing to Improve Resilience of Neural Networks to Faults in Emerging Memory Technologies
树突启发计算可提高神经网络对新兴内存技术故障的恢复能力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. K. John;F. M. G. França;Subhasish Mitra;Zachary Susskind;P. M. V. Lima;Igor D. S. Miranda;E. B. John;Diego L. C. Dutra;M. Breternitz - 通讯作者:
M. Breternitz
Cooling future system-on-chips with diamond inter-tiers
使用金刚石中间层冷却未来片上系统
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.9
- 作者:
M. Malakoutian;Anna Kasperovich;Dennis Rich;Kelly Woo;Christopher Perez;R. Soman;Devansh Saraswat;Jeong;Maliha Noshin;Michelle Chen;Sam Vaziri;Xinyu Bao;Che Chi Shih;W. Woon;M. Asheghi;Kenneth E. Goodson;S. Liao;Subhasish Mitra;Srabanti Chowdhury - 通讯作者:
Srabanti Chowdhury
Efficient seed utilization for reseeding based compression [logic testing]
基于重新播种的压缩的高效种子利用[逻辑测试]
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
E. Volkerink;Subhasish Mitra - 通讯作者:
Subhasish Mitra
Subhasish Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhasish Mitra', 18)}}的其他基金
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Learning Machines (ENIGMA)
E2CDA:类型 I:协作研究:节能学习机 (ENIGMA)
- 批准号:
1640078 - 财政年份:2016
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1317470 - 财政年份:2013
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Workshop: Bugs and Defects in Electronic Systems: The Next Frontier
研讨会:电子系统中的错误和缺陷:下一个前沿
- 批准号:
1341270 - 财政年份:2013
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
SHF:Medium:Collaborative Research: AgeELESS: Aging Estimation and Lifetime Enhancement in Silicon Systems
SHF:中:合作研究:AgeELESS:硅系统中的老化估计和寿命增强
- 批准号:
1161332 - 财政年份:2012
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
II-NEW: Robust Carbon Nanotube Technology for Energy-Efficient Computing Systems: A Processing and Design Infrastructure for Emerging Nanotechnologies
II-新:用于节能计算系统的稳健碳纳米管技术:新兴纳米技术的处理和设计基础设施
- 批准号:
1059020 - 财政年份:2011
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
- 批准号:
1028831 - 财政年份:2010
- 资助金额:
$ 29.96万 - 项目类别:
Continuing Grant
Collaborative Research: Globally Optimized Robust Systems on Multi-Core Hardware
协作研究:多核硬件上的全局优化鲁棒系统
- 批准号:
0903459 - 财政年份:2009
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Collaborative Research: Design, Modeling, Automation and Experimentation of Imperfection Immune Carbon Nanotube Field Effect Transitor Circuits
合作研究:不完美免疫碳纳米管场效应晶体管电路的设计、建模、自动化和实验
- 批准号:
0702343 - 财政年份:2007
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
相似国自然基金
TG2调控白血病干细胞的生物力学特性及干性维持
- 批准号:82370159
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
sTREM2通过TG2抑制神经元内tau蛋白磷酸化的机制研究
- 批准号:82301356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LncRNA编码肽EDP14的发现及调控TG2入核抑制血管平滑肌细胞表型转化在主动脉夹层进展中的作用机制研究
- 批准号:82370482
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
双靶向CSPG4/CD126嵌合抗原受体修饰的复制缺失型弓形虫减毒活疫苗(CAR-Tg)抗恶性黑色素瘤的效应及机制研究
- 批准号:32370997
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
TG-Sp5C-脊髓前角通路介导的面部穴位对前肢运动的作用研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
FuSe-TG: Advanced Device and System Opportunities for future Neuromorphic Integrated Circuits (NICs) and Their Applications
FuSe-TG:未来神经形态集成电路 (NIC) 及其应用的先进设备和系统机会
- 批准号:
2235411 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
FuSe-TG: A Co-Design Model for Advanced Manufacturing and Workforce Development to Enhance Future Semiconductor Technologies
FuSe-TG:先进制造和劳动力发展的协同设计模型,以增强未来的半导体技术
- 批准号:
2235294 - 财政年份:2023
- 资助金额:
$ 29.96万 - 项目类别:
Standard Grant
Triglycerides as a Predictor of Newborn Subcutaneous and Liver Fat: Contributors to Fetal Fat Accretion in Obese Pregnancies
甘油三酯作为新生儿皮下脂肪和肝脏脂肪的预测因子:导致肥胖妊娠中胎儿脂肪堆积的因素
- 批准号:
10209574 - 财政年份:2021
- 资助金额:
$ 29.96万 - 项目类别:
Triglycerides as a Predictor of Newborn Subcutaneous and Liver Fat: Contributors to Fetal Fat Accretion in Obese Pregnancies
甘油三酯作为新生儿皮下脂肪和肝脏脂肪的预测因子:导致肥胖妊娠中胎儿脂肪堆积的因素
- 批准号:
10402851 - 财政年份:2021
- 资助金额:
$ 29.96万 - 项目类别:
Role of Intestinal Bile Acid Signaling in Liver Diseases
肠胆汁酸信号在肝脏疾病中的作用
- 批准号:
10621137 - 财政年份:2017
- 资助金额:
$ 29.96万 - 项目类别: