E2CDA: Type I: Collaborative Research: Energy Efficient Learning Machines (ENIGMA)
E2CDA:类型 I:协作研究:节能学习机 (ENIGMA)
基本信息
- 批准号:1640078
- 负责人:
- 金额:$ 67.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will aim to develop computing hardware and software that improve the energy efficiency of learning machines by many orders of magnitude. In doing so it will enable large societal adoption of such machines, paving the way for new applications in diverse areas such as manufacturing, healthcare, agriculture, and many others. For example, machines that learn the behavioral trends of individual human beings by collecting data from myriads of sensors may be able to design the most appropriate drugs. Similarly, one may envision machines that learn trends in the weather and thereby assist in predicting the most optimized preparations for the next crop cycle. The possibilities are literally endless. However, the canonical learning machines of today need huge amount of energy, significantly hindering their adoption for widespread applications. The goal of this project will be to explore, evaluate and innovate new hardware and software paradigms that could reduce energy dissipation in learning machines by a significant amount. The team of researchers consists of experts in mathematics, neuroscience, electronic devices and materials and computer circuit and system design that will foster a unique platform for both innovative research and interdisciplinary training of graduate students.We are witnessing a regimental shift in the computing paradigm. For a vast number of applications, cognitive functions such as classification, recognition, synthesis, decision-making and learning are gaining rapid importance in a world that is infused with sensing modalities, often paraphrased under a common term of "Big Data", that are in critical need of efficient information-extraction. This is in sharp contrast to the past when the central objective of computing was to perform calculations on numbers and produce results with extreme numerical accuracy. We aim to approach this problem by exploiting cognitive models that have shown efficacy in "one shot" learning. In this approach, the information is represented by means of high dimensional (HD) vectors. These vectors follow a set of predetermined mathematical operations that ensure that the resulting vector after such operations is unique. The uniqueness can in turn be used as "learning" and the predefined nature of mathematical operations make the learning "one shot". When paired with traditional artificial neural network or deep learning algorithms, such "one shot" learning could significantly reduce the number of necessary computing operations, leading to orders of magnitude reduction in energy dissipation. We shall explore the entire computer hierarchy, staring from materials and devices, all the way up to system design and optimization to exploit the unique capabilities afforded by the HD computing, with the ultimate objective of realizing energy efficient learning machines (ENIGMA).
该项目旨在开发计算硬件和软件,将学习机的能源效率提高多个数量级。这样做将使此类机器在社会上得到广泛采用,为制造、医疗保健、农业等不同领域的新应用铺平道路。例如,通过从无数传感器收集数据来了解人类个体行为趋势的机器也许能够设计出最合适的药物。同样,人们可能会设想机器能够学习天气趋势,从而帮助预测下一个作物周期的最优化准备工作。可能性实际上是无限的。然而,当今的规范学习机器需要大量的能量,这极大地阻碍了它们的广泛应用。该项目的目标是探索、评估和创新新的硬件和软件范例,这些范例可以显着减少学习机的能量耗散。研究人员团队由数学、神经科学、电子设备和材料以及计算机电路和系统设计方面的专家组成,将为研究生的创新研究和跨学科培训打造一个独特的平台。我们正在见证计算范式的全面转变。对于大量应用来说,分类、识别、综合、决策和学习等认知功能在充满传感模式的世界中变得越来越重要,这些模式通常用“大数据”这一通用术语来解释,即迫切需要有效的信息提取。这与过去形成鲜明对比,过去计算的中心目标是对数字进行计算并产生具有极高数值精度的结果。我们的目标是通过利用在“一次性”学习中显示出有效性的认知模型来解决这个问题。在这种方法中,信息通过高维(HD)向量来表示。这些向量遵循一组预定的数学运算,以确保这些运算后得到的向量是唯一的。这种独特性又可以用作“学习”,并且数学运算的预定义性质使学习成为“一次性”。当与传统的人工神经网络或深度学习算法配合使用时,这种“一次性”学习可以显着减少必要的计算操作数量,从而使能量耗散减少几个数量级。我们将探索整个计算机层次结构,从材料和设备开始,一直到系统设计和优化,以利用高清计算提供的独特功能,最终目标是实现节能学习机(ENIGMA)。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Illusion of large on-chip memory by networked computing chips for neural network inference
- DOI:10.1038/s41928-020-00515-3
- 发表时间:2021-01
- 期刊:
- 影响因子:34.3
- 作者:R. Radway;Andrew Bartolo;Paul C. Jolly;Zainab F. Khan;B. Le;Pulkit Tandon;Tony F. Wu;Yunfeng Xin;E. Vianello;P. Vivet;E. Nowak;H. Wong;M. Aly;E. Beigné;Mary Wootters;S. Mitra
- 通讯作者:R. Radway;Andrew Bartolo;Paul C. Jolly;Zainab F. Khan;B. Le;Pulkit Tandon;Tony F. Wu;Yunfeng Xin;E. Vianello;P. Vivet;E. Nowak;H. Wong;M. Aly;E. Beigné;Mary Wootters;S. Mitra
Brain-inspired computing exploiting carbon nanotube FETs and resistive RAM: Hyperdimensional computing case study
- DOI:10.1109/isscc.2018.8310399
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Tony F. Wu;Haitong Li;Ping-Chen Huang;Abbas Rahimi;J. Rabaey;H. Wong;M. Shulaker;S. Mitra
- 通讯作者:Tony F. Wu;Haitong Li;Ping-Chen Huang;Abbas Rahimi;J. Rabaey;H. Wong;M. Shulaker;S. Mitra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhasish Mitra其他文献
Dendrite-inspired Computing to Improve Resilience of Neural Networks to Faults in Emerging Memory Technologies
树突启发计算可提高神经网络对新兴内存技术故障的恢复能力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. K. John;F. M. G. França;Subhasish Mitra;Zachary Susskind;P. M. V. Lima;Igor D. S. Miranda;E. B. John;Diego L. C. Dutra;M. Breternitz - 通讯作者:
M. Breternitz
Cooling future system-on-chips with diamond inter-tiers
使用金刚石中间层冷却未来片上系统
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.9
- 作者:
M. Malakoutian;Anna Kasperovich;Dennis Rich;Kelly Woo;Christopher Perez;R. Soman;Devansh Saraswat;Jeong;Maliha Noshin;Michelle Chen;Sam Vaziri;Xinyu Bao;Che Chi Shih;W. Woon;M. Asheghi;Kenneth E. Goodson;S. Liao;Subhasish Mitra;Srabanti Chowdhury - 通讯作者:
Srabanti Chowdhury
Efficient seed utilization for reseeding based compression [logic testing]
基于重新播种的压缩的高效种子利用[逻辑测试]
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
E. Volkerink;Subhasish Mitra - 通讯作者:
Subhasish Mitra
Subhasish Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhasish Mitra', 18)}}的其他基金
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
- 批准号:
2326895 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
FuSe-TG: The Future of Semiconductor Technologies for Computing through Device-Architecture-Application Co-Design
FuSe-TG:通过设备-架构-应用协同设计进行计算的半导体技术的未来
- 批准号:
2235329 - 财政年份:2023
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1317470 - 财政年份:2013
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
Workshop: Bugs and Defects in Electronic Systems: The Next Frontier
研讨会:电子系统中的错误和缺陷:下一个前沿
- 批准号:
1341270 - 财政年份:2013
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
SHF:Medium:Collaborative Research: AgeELESS: Aging Estimation and Lifetime Enhancement in Silicon Systems
SHF:中:合作研究:AgeELESS:硅系统中的老化估计和寿命增强
- 批准号:
1161332 - 财政年份:2012
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
II-NEW: Robust Carbon Nanotube Technology for Energy-Efficient Computing Systems: A Processing and Design Infrastructure for Emerging Nanotechnologies
II-新:用于节能计算系统的稳健碳纳米管技术:新兴纳米技术的处理和设计基础设施
- 批准号:
1059020 - 财政年份:2011
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
- 批准号:
1028831 - 财政年份:2010
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
Collaborative Research: Globally Optimized Robust Systems on Multi-Core Hardware
协作研究:多核硬件上的全局优化鲁棒系统
- 批准号:
0903459 - 财政年份:2009
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
Collaborative Research:Design, Modeling, Automation and Experimentation of Nanoscale Computing Fabric using Carbon Nanotubes
合作研究:使用碳纳米管的纳米级计算结构的设计、建模、自动化和实验
- 批准号:
0726791 - 财政年份:2007
- 资助金额:
$ 67.85万 - 项目类别:
Standard Grant
相似国自然基金
典型草原不同退化类型雪水消融过程水分转换效率研究
- 批准号:32360295
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
结构-能动性视角下特殊类型地区新产业路径塑造机制及效应研究
- 批准号:42371174
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
氯盐类型对超高性能混凝土基体中氯离子结合与钢筋锈蚀影响机理研究
- 批准号:52308249
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
不同菌根类型树种与毛竹磷竞争对土壤碳动态的影响机制
- 批准号:32371726
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
E2CDA: Type II: Collaborative Research: Metal-insulator transitions for low power switching devices
E2CDA:类型 II:协作研究:低功率开关器件的金属绝缘体转换
- 批准号:
1740213 - 财政年份:2017
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Interconnects Beyond Cu
E2CDA:I 类:协作研究:铜以外的互连
- 批准号:
1740228 - 财政年份:2017
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Nanophotonic Neuromorphic Computing
E2CDA:I 型:协作研究:纳米光子神经形态计算
- 批准号:
1740262 - 财政年份:2017
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
E2CDA: Type II: Collaborative Research: Metal-insulator transitions for low power switching devices
E2CDA:类型 II:协作研究:低功率开关器件的金属绝缘体转换
- 批准号:
1740119 - 财政年份:2017
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant
E2CDA: Type I: Collaborative Research: Nanophotonic Neuromorphic Computing
E2CDA:I 型:协作研究:纳米光子神经形态计算
- 批准号:
1740235 - 财政年份:2017
- 资助金额:
$ 67.85万 - 项目类别:
Continuing Grant