Quantum Symmetries of Topological Phases of Matter
物质拓扑相的量子对称性
基本信息
- 批准号:2205962
- 负责人:
- 金额:$ 19.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ordinary phases of matter (gas, liquid, solid) are distinguished by their symmetries: transformations that leave them unchanged--for example a ninety degree rotation of a cubic solid. Exotic quantum states of matter present under extreme conditions (low temperatures, strong magnetic fields) exhibit symmetries that resist a simple geometric description. Rather, their symmetries are understood through topology: qualitative geometry in which angles and lengths are ignored. The study of topological states is as important for their application to quantum technologies as for understanding the physical world. Of particular interest are the applications in quantum information. The investigator will study the mathematical symmetries of these topological phases of matter for the purpose of classifying and distinguishing them, probing their properties, and understanding how they are related through phase transitions. Some emphasis will be on how the properties of these phases of matter might find utility in quantum technologies. The investigator will employ theoretical and computational methods to study mathematical models for topological phases of matter. While two-dimensional topological phases of matter have been well-studied, many important questions remain. Three-dimensional systems with topological features are playing an increasingly substantial role yet are not as well-studied from a rigorous mathematical perspective. Two key themes in quantum symmetries are braided fusion categories and motion group representations: the first models the topologically invariant features of topological phases of matter, and the second encodes the topological dynamics of anyons and loop-like excitations. Understanding how the models are related through symmetries and phase transitions will provide a clearer picture of the landscape of topological phases of matter. In a complementary direction, the investigator will develop methods to understand the physically relevant representations of the braid group and higher dimensional generalizations. In three dimensions there is tension between the sensitivity of the topological invariants and the physically motivated assumption of unitarity. This challenge will be met through the study of non-semisimple categories and representations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物质的普通相(气体、液体、固体)以其对称性来区分:使它们保持不变的变换——例如立方固体的九十度旋转。 在极端条件(低温、强磁场)下存在的奇异物质量子态表现出难以简单几何描述的对称性。相反,它们的对称性是通过拓扑来理解的:忽略角度和长度的定性几何。 拓扑态的研究对于其在量子技术中的应用与理解物理世界同样重要。 特别令人感兴趣的是量子信息中的应用。研究人员将研究物质这些拓扑相的数学对称性,以便对它们进行分类和区分,探究它们的性质,并了解它们如何通过相变相互关联。 重点将放在这些物质相的特性如何在量子技术中发挥作用。研究人员将采用理论和计算方法来研究物质拓扑相的数学模型。虽然物质的二维拓扑相已得到充分研究,但仍然存在许多重要问题。 具有拓扑特征的三维系统正在发挥着越来越重要的作用,但从严格的数学角度对其进行的研究还不够充分。量子对称性的两个关键主题是编织融合类别和运动群表示:第一个模型模拟了物质拓扑相的拓扑不变特征,第二个编码了任意子和环状激发的拓扑动力学。 了解模型如何通过对称性和相变相互关联,将为物质拓扑相的景观提供更清晰的图景。 在一个互补的方向上,研究人员将开发方法来理解辫子组的物理相关表示和更高维度的概括。 在三维空间中,拓扑不变量的敏感性与物理驱动的幺正性假设之间存在着紧张关系。 这一挑战将通过非半简单类别和表示的研究来应对。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reconstruction of Modular Data from $${\text {SL}}_2({\mathbb {Z}})$$ Representations
从 $${ ext {SL}}_2({mathbb {Z}})$$ 表示重建模块化数据
- DOI:10.1007/s00220-023-04775-w
- 发表时间:2023-07
- 期刊:
- 影响因子:2.4
- 作者:Ng, Siu;Rowell, Eric C.;Wang, Zhenghan;Wen, Xiao
- 通讯作者:Wen, Xiao
Reconstructing braided subcategories of SU(N)
重建 SU(N) 的编织子类别
- DOI:10.1016/j.jalgebra.2023.08.005
- 发表时间:2023-12
- 期刊:
- 影响因子:0.9
- 作者:Feng, Zhaobidan;Ming, Shuang;Rowell, Eric C.
- 通讯作者:Rowell, Eric C.
G ‐crossed braided zesting
G — 交叉编织的热情
- DOI:10.1112/jlms.12816
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Delaney, Colleen;Galindo, César;Plavnik, Julia;Rowell, Eric C.;Zhang, Qing
- 通讯作者:Zhang, Qing
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Rowell其他文献
FUELVISION: A Multimodal Data Fusion and Multimodel Ensemble Algorithm for Wildfire Fuels Mapping
FUELVISION:用于野火燃料测绘的多模态数据融合和多模型集成算法
- DOI:
10.48550/arxiv.2403.15462 - 发表时间:
2024-03-19 - 期刊:
- 影响因子:0
- 作者:
R. Shaik;Mohamad Alipour;Eric Rowell;Bharathan Balaji;Adam Watts;E. Taciroğlu - 通讯作者:
E. Taciroğlu
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen - 通讯作者:
Janice Coen
Deep Learning Approach to Improve Spatial Resolution of GOES-17 Wildfire Boundaries Using VIIRS Satellite Data
使用 VIIRS 卫星数据提高 GOES-17 野火边界空间分辨率的深度学习方法
- DOI:
10.3390/rs16040715 - 发表时间:
2024-02-18 - 期刊:
- 影响因子:0
- 作者:
Mukul Badhan;Kasra Shamsaei;Hamed Ebrahimian;G. Bebis;Neil P. Lareau;Eric Rowell - 通讯作者:
Eric Rowell
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
- DOI:
- 发表时间:
2023-01 - 期刊:
- 影响因子:0
- 作者:
Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen - 通讯作者:
Janice Coen
Wildland Fire Detection and Monitoring Using a Drone-Collected RGB/IR Image Dataset
使用无人机收集的 RGB/IR 图像数据集进行荒地火灾探测和监控
- DOI:
10.1109/access.2022.3222805 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.9
- 作者:
Xiwen Chen;Bryce Hopkins;Hao Wang;Leo O’Neill;Fatemeh Afghah;A. Razi;Peter Fulé;Janice Coen;Eric Rowell;Adam Watts - 通讯作者:
Adam Watts
Eric Rowell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Rowell', 18)}}的其他基金
Conference: ICMS: Topological Quantum Computing
会议:ICMS:拓扑量子计算
- 批准号:
2327208 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Conference: ICMS: Topological Quantum Computing
会议:ICMS:拓扑量子计算
- 批准号:
2327208 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
- 批准号:
2038741 - 财政年份:2021
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Collaborative Research: Biomass burning smoke as a driver of multi-scale microbial teleconnections
合作研究:生物质燃烧烟雾作为多尺度微生物遥相关的驱动因素
- 批准号:
2039531 - 财政年份:2021
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Quantized Symmetries in Operator Algebras and Quantum Information
算子代数和量子信息中的量化对称性
- 批准号:
2000331 - 财政年份:2020
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
- 批准号:
1664359 - 财政年份:2017
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Foundations of Topological Quantum Computation
合作研究:拓扑量子计算的数学基础
- 批准号:
1410144 - 财政年份:2015
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Collaborative Research: Topological Phases of Matter and their Application to Quantum Computing
合作研究:物质的拓扑相及其在量子计算中的应用
- 批准号:
1108725 - 财政年份:2011
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
相似国自然基金
模对称性及其在味物理中的应用
- 批准号:12375104
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
过冷Ga基液态金属团簇对称性与物性不连续演变的构效关系研究
- 批准号:52301207
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
磁场对称性对等离子体流、湍流及输运垒的影响研究
- 批准号:12311540010
- 批准年份:2023
- 资助金额:19 万元
- 项目类别:国际(地区)合作与交流项目
70Br高精度质量测量与同位旋对称性的研究
- 批准号:12305126
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于对称性约束下特征模式形成机理的天线阵列微波电路一体化波束调控机制研究
- 批准号:62371034
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
- 批准号:
2228888 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
LEAPS-MPS: Topological Symmetries of Non-Compact Riemann Surfaces
LEAPS-MPS:非紧黎曼曲面的拓扑对称性
- 批准号:
2212922 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Classification of Orbifolds and Symmetries of Topological Field Theories with and without Anomalies
有异常和无异常的拓扑场论的轨道折叠和对称性分类
- 批准号:
547533-2020 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Quantum Symmetries: Subfactors, Topological Phases, and Higher Categories
量子对称性:子因子、拓扑相和更高类别
- 批准号:
2154389 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Conference on Quantum Symmetries: Tensor Categories, Topological Quantum Field Theories, and Vertex Algebras
量子对称会议:张量范畴、拓扑量子场论和顶点代数
- 批准号:
2228888 - 财政年份:2022
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant