Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
基本信息
- 批准号:2234031
- 负责人:
- 金额:$ 22.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This collaborative project between University of North Carolina at Charlotte (UNCC) and Clemson University (Clemson) aims at addressing significant national challenges and needs, namely in the fields of artificial intelligence and clean electric power and energy systems. While growing in popularity and diversity of applications, deep learning (DL) methods nonetheless confront challenges especially for modeling complex systems. These include lack of robustness, scalability, and composability. The research outcomes of this collaborative project will be: i) mathematical tools for understanding and designing a graph-optimized Cellular Computational Network (CCN) for complex system modeling and optimization; CCN suggests a composable modularity that can divide a large system into small subsystems with corresponding computational cells and ii) empowering the operation of carbon-free electric power distribution systems (EPDSs), with goals of improving energy sustainability (while avoiding climate disasters), energy security, and electricity infrastructure reliability. Furthermore, this collaborative project will provide unique research training to graduate and undergraduate students in the disciplines of artificial intelligence, machine learning, and power systems engineering at the two institutions. The state-of-the-art smart grid equipment at Real-Time Power and Intelligent Systems Lab at Clemson and high-performance computing systems and AI equipment at Synergistic Human+AI Research lab at UNCC will be used to impact outreach activities to high school students. Underrepresented minority and women groups will be recruited to participate in the research at the two institutions. Therefore, this project contributes to the creation of a new, diverse workforce knowledgeable in machine learning and AI, smart grid/power system technologies, and renewable energy. Our approach to address the challenging problem of complex system modeling and optimization constitute a novel blend of interdisciplinary study in statistical learning theory, graph theory, control theory, and optimization theory that will lead to novel dynamic system modeling. The project proposes a principled framework and mathematical validation to 1) automatically infer a graph topology from data, 2) develop multi-resolution graph evaluation for reinforcement learning (RL)-based refinement, 3) provide novel and stable reward function design principle for a continuously evolving CCN model, and thus 4) optimize the voltage profile in an EPDS with distributed energy resources. Overall, our principled mathematical tools for graph-optimized CCN models will broaden the scope of theory and applications in an electric power distribution system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
北卡罗来纳大学夏洛特大学(UNCC)和克莱姆森大学(Clemson)之间的合作项目旨在解决重大的国家挑战和需求,即在人工智能和清洁电力和能源系统领域。尽管在应用程序的流行和多样性中,深度学习(DL)方法仍然面临着挑战,尤其是在建模复杂系统时面临挑战。这些包括缺乏鲁棒性,可伸缩性和合并性。该协作项目的研究结果将是:i)用于理解和设计用于复杂系统建模和优化的图形优化的蜂窝计算网络(CCN)的数学工具; CCN提出了一个可组合的模块化,可以将大型系统划分为具有相应计算单元的小子系统,ii)赋予无碳电力发电系统(EPDSS)的运行能力,并具有改善能源可持续性的目标(避免气候灾难),能源安全和电力基础设施的可靠性。此外,这个协作项目将在两个机构的人工智能,机器学习和电力系统工程学科中为研究生和本科生提供独特的研究培训。 Clemson的实时功率和智能系统实验室的最先进的智能电网设备以及UNCC协同人类+AI研究实验室的高性能计算系统和AI设备将用于影响高中生的外展活动。将招募代表性不足的少数民族和妇女团体参加这两个机构的研究。因此,该项目有助于创建一个新的,多样化的劳动力在机器学习和AI,智能电网/电力系统技术和可再生能源方面的知识。 我们解决复杂系统建模和优化的具有挑战性问题的方法构成了统计学习理论,图理论,控制理论和优化理论中跨学科研究的新型融合,该理论将导致新型的动态系统建模。该项目提出了一个原则性的框架和数学验证1)从数据中自动推断出图形拓扑,2)开发基于加固学习的多分辨率图评估(RL)改进,3)为连续发展的CCN模型提供新颖且稳定的奖励功能设计原理,从而优化与分布分布的Epdage Epdage Epdage progitige。总体而言,我们针对图形优化的CCN模型的原则数学工具将扩大电力发电系统中理论和应用的范围。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响标准通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Minwoo Lee其他文献
System identification and early warning detection of thermoacoustic oscillations in a turbulent combustor using its noise-induced dynamics
利用噪声引起的动力学对湍流燃烧器中的热声振荡进行系统识别和预警检测
- DOI:
10.1016/j.proci.2020.06.057 - 发表时间:
2020-08 - 期刊:
- 影响因子:3.4
- 作者:
Minwoo Lee;Kyu Tae Kim;Vikrant Gupta;Larry K.B. Li - 通讯作者:
Larry K.B. Li
Evaluation of a Photo Captioning Cognitive Empathy Intervention for Dementia Caregivers.
对痴呆症护理人员的照片说明认知移情干预的评估。
- DOI:
10.1080/07317115.2024.2317972 - 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
James K. Rilling;Minwoo Lee;Julie McIsaac;Sophie Factor;Paige Gallagher;Joseph H Kim;Jiajin Zhang;Carolyn Zhou;Thomas W. McDade;Kenneth Hepburn;Molly M. Perkins - 通讯作者:
Molly M. Perkins
Towards In-Band Telemetry for Self Driving Wireless Networks
迈向自动驾驶无线网络的带内遥测
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Prabhu Janakaraj;Pinyarash Pinyoanuntapong;Pu Wang;Minwoo Lee - 通讯作者:
Minwoo Lee
Discovery of 2-(4-((1H-1,2,4-triazol-1-yl)methyl)-5-(4-bromophenyl)-1-(2-chlorophenyl)-1H-pyrazol-3-yl)-5-tert-butyl-1,3,4-thiadiazole (GCC2680) as a potent, selective and orally efficacious cannabinoid-1 receptor antagonist.
2-(4-((1H-1,2,4-三唑-1-基)甲基)-5-(4-溴苯基)-1-(2-氯苯基)-1H-吡唑-3-基)的发现
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:3.5
- 作者:
J. Lee;H. Seo;Suk Ho Lee;Jeongmin Kim;M. E. Jung;Sung;K. Song;Junwon Lee;S. Kang;Min Ju Kim;Misoon Kim;Eun;Minwoo Lee;Ho - 通讯作者:
Ho
Disruptive Technologies and Innovation in Hospitality: A Computer-Assisted Qualitative Data Analysis Approach
酒店业的颠覆性技术和创新:计算机辅助定性数据分析方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Minwoo Lee;Annamarie D. Sisson;R. Costa;B. Bai - 通讯作者:
B. Bai
Minwoo Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
- 批准号:
2234032 - 财政年份:2023
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
- 批准号:
2212263 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning
合作研究:SCALE MoDL:深度学习的表示理论基础
- 批准号:
2134274 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Continuing Grant
Collaborative Research: RI:Medium:MoDL:Mathematical and Conceptual Understanding of Large Language Models
合作研究:RI:Medium:MoDL:大型语言模型的数学和概念理解
- 批准号:
2211779 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
- 批准号:
2212262 - 财政年份:2022
- 资助金额:
$ 22.41万 - 项目类别:
Standard Grant