Collaborative Research: SCALE MoDL: Representation Theoretic Foundations of Deep Learning

合作研究:SCALE MoDL:深度学习的表示理论基础

基本信息

  • 批准号:
    2134274
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

In the past decade, deep learning has had transformative impacts across society. However, progress has often relied on heuristic methods, massive data, and great computing power. This comes with limited theoretical understanding and has at times given rise to failures of generalization and vulnerable performance in extreme scenarios. This project will address these limitations by developing strong theoretical foundations for deep learning using representation theory, which is the mathematical study of symmetry. Symmetry plays a key role in human reasoning. Greater understanding of the role symmetry plays in deep learning will unlock a variety of improved models. These include models that can learn from scientific knowledge and not just raw data, models with trustable, guaranteed performance, and models that can recombine patterns they have already learned — as humans do easily — to generalize to new situations more rapidly. An explicit goal of this project is to broaden research into why deep learning works. To this end, the investigators will integrate the research into education and establish a mentorship program for high school students from groups underrepresented in science.The goal of the research is to understand the role of representation theory in enabling efficient optimization and improved generalization of deep learning even in domains with approximate or unknown symmetry. This project pursues three lines of research that will broaden the impact of representation theory in deep learning beyond strict inductive biases. The first is the trade-off between the degree of symmetry in the model and the degree of symmetry in the domain. This line of research will study networks that combine equivariant and non-equivariant features. The second line of research will examine learning symmetry directly from data to improve generalization in domains without known symmetries. The third aim is to develop a theoretical basis for deep learning using quiver representations. This perspective reveals the symmetry of the structure of deep-learning models themselves, through their parameter spaces, even when the domains have no obvious symmetry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,深度学习在整个社会上产生了变革性的影响。但是,进步通常依赖于启发式方法,大量数据和出色的计算能力。这是有限的理论理解,有时会导致在极端情况下的概括和脆弱性能的失败。该项目将通过使用代表理论为对称性的数学研究开发强大的理论基础来解决这些局限性。对称性在人类推理中起关键作用。对对称性在深度学习中所起的作用有更多的了解将解锁各种改进的模型。这些模型包括可以从科学知识中学习的模型,而不仅仅是原始数据,具有可信赖性,保证性能的模型,以及可以重新组合他们已经学到的模式(就像人类一样容易)的模型,以更快地推广到新情况。该项目的明确目标是扩大研究深度学习作用的研究。为此,研究人员将将研究研究整合到教育中,并为科学领域不足的小组的高中学生建立心态计划。该研究的目的是了解代表理论在实现有效优化和改善深度学习的作用,即使在具有近似或未知对称性的领域的深度学习中,也是如此。该项目追求三项研究,将扩大代表理论在深度学习中的影响,超越严格的归纳偏见。首先是模型中对称程度与域中对称程度之间的权衡。这一研究将研究结合均等和非等价特征的网络。第二条研究将直接从数据中检查学习对称性,以改善没有已知对称性的域中的概括。第三个目的是建立使用颤抖表征深度学习的理论基础。这种观点通过参数空间揭示了深度学习模型本身的结构的对称性,即使域没有明显的对称性,该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响审查标准通过评估来评估的。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic Symmetry for Multi-Agent Dynamics
  • DOI:
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sophia Sun;R. Walters;Jinxi Li;Rose Yu
  • 通讯作者:
    Sophia Sun;R. Walters;Jinxi Li;Rose Yu
Automatic Symmetry Discovery with Lie Algebra Convolutional Network
  • DOI:
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nima Dehmamy;R. Walters;Yanchen Liu-;Dashun Wang;Rose Yu
  • 通讯作者:
    Nima Dehmamy;R. Walters;Yanchen Liu-;Dashun Wang;Rose Yu
Approximately Equivariant Networks for Imperfectly Symmetric Dynamics
  • DOI:
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rui Wang;R. Walters;Rose Yu
  • 通讯作者:
    Rui Wang;R. Walters;Rose Yu
Symmetry Teleportation for Accelerated Optimization
用于加速优化的对称隐形传态
共 4 条
  • 1
前往

Qi Yu其他文献

The diagnostic value of chromosome microarray analysis technique in the genetic causes of children with intellectual disability or global developmental delay
Online reliability time series prediction via convolutional neural network and long short term memory for service-oriented systems
通过卷积神经网络和面向服务的系统的长短期记忆进行在线可靠性时间序列预测
  • DOI:
    10.1016/j.knosys.2018.07.006
    10.1016/j.knosys.2018.07.006
  • 发表时间:
    2018
    2018
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Hongbing Wang;Zhengping Yang;Qi Yu;Tianjing Hong;Xin Lin
    Hongbing Wang;Zhengping Yang;Qi Yu;Tianjing Hong;Xin Lin
  • 通讯作者:
    Xin Lin
    Xin Lin
The Dark Side of Category Expansion: Will (and Which) Existing Ones "Pay the Price"?
品类扩张的阴暗面:现有品类会(以及哪些)“付出代价”?
Diffusion Monte Carlo and PIMD calculations of radial distribution functions using an updated CCSD(T) potential for CH5+
使用 CH5 更新的 CCSD(T) 势进行径向分布函数的扩散蒙特卡罗和 PIMD 计算
  • DOI:
  • 发表时间:
    2023
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Chen Qu;Qi Yu;Paul L Houston;Priyanka Pandey;R. Conte;Apurba Nandi;J. Bowman
    Chen Qu;Qi Yu;Paul L Houston;Priyanka Pandey;R. Conte;Apurba Nandi;J. Bowman
  • 通讯作者:
    J. Bowman
    J. Bowman
Intrusion of inhaled exotic ultrafine particles into the knee joint in humans and animals: A risk to the joint and surrounding tissues
吸入的外来超细颗粒侵入人类和动物的膝关节:对关节和周围组织的风险
  • DOI:
    10.1016/j.nantod.2022.101426
    10.1016/j.nantod.2022.101426
  • 发表时间:
    2022-04
    2022-04
  • 期刊:
  • 影响因子:
    17.4
  • 作者:
    Qi Yu;Wei Shuting;Chen Yucai;Pu Yichen;Liu Sijin;Liu Yajun
    Qi Yu;Wei Shuting;Chen Yucai;Pu Yichen;Liu Sijin;Liu Yajun
  • 通讯作者:
    Liu Yajun
    Liu Yajun
共 263 条
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 53
前往

Qi Yu的其他基金

CAREER: New Frontiers In Large-Scale Spatiotemporal Data Analysis
职业:大规模时空数据分析的新领域
  • 批准号:
    2146343
    2146343
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Continuing Grant
    Continuing Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
  • 批准号:
    2037745
    2037745
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant
CRII: III: Multiresolution Tensor Learning for Scalable and Interpretable Spatiotemporal Analysis
CRII:III:用于可扩展和可解释时空分析的多分辨率张量学习
  • 批准号:
    1850349
    1850349
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant
CHS:Small:Utilizing synergy between human and computer information processing for complex visual information organization and use
CHS:Small:利用人与计算机信息处理之间的协同作用来组织和使用复杂的视觉信息
  • 批准号:
    1814450
    1814450
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant

相似国自然基金

多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
农业绿色发展背景下水稻规模户“双减”行为及干预策略研究:基于纵向协作视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
农业绿色发展背景下水稻规模户“双减”行为及干预策略研究:基于纵向协作视角
  • 批准号:
    72273141
  • 批准年份:
    2022
  • 资助金额:
    45.00 万元
  • 项目类别:
    面上项目
面向跨时空网络化群体决策的大规模群体协作行为建模与共识集成方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant
Collaborative Research: MRA: A functional model of soil organic matter composition at continental scale
合作研究:MRA:大陆尺度土壤有机质组成的功能模型
  • 批准号:
    2307253
    2307253
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
    $ 30万
  • 项目类别:
    Standard Grant
    Standard Grant