EAR-PF: Constraining Paired Air-Water Temperature Models' Efficacy In Head and Intermediate Watersheds With Groundwater and Bedrock Assessment and Multi-Decade Temperature Records
EAR-PF:通过地下水和基岩评估以及数十年的温度记录来约束成对空气-水温度模型在源头和中间流域的功效
基本信息
- 批准号:2204523
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Climate change increases atmospheric temperatures, which alters temperature patterns in groundwater and streams and results in reduced water quality and ecological diversity. In parts of the eastern United States, like West Virginia, climate has already warmed 0.5º – 1.0º F over the last century and temperatures are expected to rise another 3º – 4º F by the year 2100, further warming stream and shallow groundwater temperatures and affecting the organisms that live there. Stream temperature patterns provide insight into the vulnerability of these streams and watersheds to warming temperatures. However, current models do not fully account for temperature changes caused by interactions of water on the surface and underground. Model predictions of ground and surface water temperatures in a changing climate must be informed by the factors that influence thermal signals, including climate, geology, hydrology, land use, and land cover. Data show stream temperature changes in response to changing climate are likely driven (in part) by changes in relative contributions and temperatures of discharging groundwater. The Fernow Experimental Forest (FEF) in West Virginia has been recording temperature data in at least ten headwater watersheds since 1958. Using the FEF as a well-controlled outdoor laboratory to study these temperature patterns, Riddell will generate improved models and better knowledge of these systems. Improved models can be used to estimate watershed responses to drought or high intensity precipitation events, and associated disasters such as flooding. This work will directly impact middle and high school high school students in WV through collaboration with the National Youth Science Foundation (NYSF). This proposed work is in the Monongahela National Forest where the National Youth Science Foundation has hosted its National Youth Science Camp since 1963. The FEF is close to the camp and the newly purchased National Youth Science Center (NYSCenter) in Davis, WV. During this project, collaboration with NYSF staff will result in the installation of a stream gage monitoring station on the Blackwater River, which is adjacent to the NYSCenter to deliver hydrology education to middle and high school students in WV. This collaboration will support the NYSF mission to build and maintain student interest in STEM fields and promote high school retention rates and the pursuance of post-secondary STEM education.Climate change is increasing atmospheric temperatures which alters thermal patterns in groundwater and streams, resulting in reduced water quality and ecological diversity. Thermal regimes in surface waters are highly influenced by groundwater and its connectivity to the surface, which may be discerned by comparing air and stream temperature records. Paired air-water temperature analysis via sine wave regression is a way to characterize the relationship between air temperature and surface water temperature to elucidate the groundwater contributions to watershed hydraulics, cold-water habitat refugia, and groundwater temperature response to climate change. Recent research has focused on modeling annual paired-air/water temperature signals to assess the role of groundwater in propagating air temperature to stream water from sub-watershed to continental scales. Results of these sine regression studies are focused on determining the inputs of groundwater to surface water and the eventual response of surface water to climate change by comparing the amplitude ratios (sine curve peak height) and phase lag signals (time between peaks) of air and water temperature records. Deeper groundwater signatures show little variation in annual temperature and have ambiguous amplitude ratio and phase lag whereas shallow groundwater signatures show high amplitude ratios and measurable phase lag on the order of days. However, current models do not fully account for groundwater – surface water interactions that influence stream temperatures. These processes are governed by aquifer characteristics such as aquifer thickness, porosity, hydraulic conductivity, and bedrock type and depth. This study will utilize the Fernow Experimental Forest in WV to improve thermal stream model efficacy in small and intermediate watersheds by collecting new groundwater temperature measurements, assessing the influence of differing bedrock geology in the same watershed, and exploring the efficacy of these models in hydrologically connected, nested watersheds and in watersheds in which air and stream temperature records exist across multiple decades. This study will advance the knowledge of groundwater contributions to headwater watersheds and intermediate watersheds into which they discharge and to the vulnerability of these watersheds to climate change. The current models (sine regression) being applied to large, continental size watersheds recognize the importance of local hydrogeology and geology on groundwater behavior and the subsequent effects on surface stream temperature patterns. However, no study has yet to intensively characterize the surface hydrology, hydrogeology, and bedrock geology of small watersheds and the contribution of all these factors on stream temperature patterns. This study will fill that gap and highlight the importance of characterizing the subsurface when making predictions about the surface. This project is jointly funded by the Earth Sciences Postdoctoral Fellowship program, the Established Program to Stimulate Competitive Research (EPSCoR) and the Hydrologic Sciences program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化导致大气温度升高,从而改变地下水和溪流的温度模式,导致水质和生态多样性下降。在美国东部部分地区,如西弗吉尼亚州,气候在上个世纪已经变暖了 0.5° – 1.0°F。预计到 2100 年,气温将再上升 3° – 4°F,河流和浅层地下水温度进一步变暖,并影响生活在那里的生物体,从而了解这些河流和流域对变暖的脆弱性。然而,当前的模型并没有完全考虑到地表水和地下水相互作用引起的温度变化,模型对气候变化中地表水温度的预测必须考虑影响热信号的因素,包括气候、地质、水文学、土地利用和土地覆盖的数据显示,气候变化引起的溪流温度变化可能(部分)是由排放地下水的相对贡献和温度的变化驱动的。至少记录了十次的温度数据自 1958 年以来,Riddell 一直在研究流域的源头流域。使用 FEF 作为一个控制良好的室外实验室来研究这些温度模式,Riddell 将生成改进的模型并更好地了解这些系统。改进的模型可用于估计流域对干旱或高强度降水事件的响应。这项工作将通过与国家青年科学基金会 (NYSF) 的合作,在国家青年科学基金会主办的莫农加希拉国家森林中直接影响西弗吉尼亚州的初中和高中学生。它是自 1963 年以来一直是国家青少年科学营。FEF 靠近该营地和位于西弗吉尼亚州戴维斯的新购买的国家青少年科学中心 (NYSCenter)。在该项目中,与 NYSF 工作人员的合作将在该营地安装一个流量计监测站。黑水河,毗邻 NYSCenter,为西弗吉尼亚州的中学生和高中生提供水文教育。此次合作将支持 NYSF 培养和保持学生对 STEM 领域的兴趣,提高高中保留率和追求的使命。中学后 STEM 教育。气候变化导致大气温度升高,从而改变地下水和溪流的热模式,导致水质和生态多样性下降。地表水的热状况很大程度上受到地下水及其与地表的连通性的影响。通过比较空气和河流温度记录来识别,通过正弦波回归进行配对空气-水温度分析是一种表征空气温度和地表水温度之间关系的方法,以阐明地下水对流域水力学、冷水栖息地的贡献。最近的研究重点是对年度配对空气/水温信号进行建模,以评估地下水在将空气温度从次流域传播到大陆尺度的河流中的作用。重点是通过比较空气和水温记录的振幅比(正弦曲线峰值高度)和相位滞后信号(峰值之间的时间)来确定地下水对地表水的输入以及地表水对气候变化的最终响应。较深的地下水特征显示年温度变化很小,并且具有不明确的振幅比和相位滞后,而浅层地下水特征显示出较高的振幅比和可测量的天数级相位滞后。然而,当前的模型没有完全考虑地下水与地表水的相互作用。这些过程受含水层厚度、孔隙度、导水率以及基岩类型和深度等含水层特征的影响。本研究将利用西弗吉尼亚州的弗诺实验森林来提高热流模型的效率。通过收集新的地下水温度测量值,评估同一流域中不同基岩地质的影响,并探索这些模型在水文相连、嵌套流域以及多个流域中存在空气和河流温度记录的流域中的有效性,这项研究将增进人们对地下水对源头流域和中间流域的贡献以及这些流域对气候变化的脆弱性的了解。大陆规模的流域认识到当地水文地质和地质对地下水行为的重要性以及随后对地表河流温度模式的影响,但是,目前还没有深入的研究来描述小流域的地表水文、水文地质和基岩地质以及所有这些的贡献。这项研究将填补这一空白,并强调在对地表进行预测时表征地下的重要性。该项目由地球科学博士后奖学金计划(已建立的计划)共同资助。刺激竞争性研究 (EPSCoR) 和水文科学计划。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jill Riddell其他文献
Jill Riddell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
丘脑束旁核至背内侧纹状体(Pf-DMS)痕迹环路介导可卡因成瘾及电针耳穴干预的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于“IS/HIF-1α”介导的低氧感应失败探讨缓衰方对慢性肾脏病PD-PF的治疗机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
致病性大肠杆菌耐药质粒编码的毒素-抗毒素系统ParE/PF02604的功能研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
PF4/CXCR3轴调控Tfh1细胞分化介导ITP发病的机制研究
- 批准号:82172335
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
PF-ILDのフラクタル解析とCNN学習モデルを用いた画像診断研究
基于PF-ILD分形分析和CNN学习模型的图像诊断研究
- 批准号:
24K10916 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Feedbacks Between Controls of Stream Dry-Down Responses at the Rain-Snow Transition
博士后奖学金:EAR-PF:雨雪转变时河流干涸响应控制之间的反馈
- 批准号:
2305601 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
- 批准号:
2305448 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award