Engineering Quantum Dots and Photonic Metamaterials for Ultrasensitive and Multiplexed Digital Resolution Biomolecule Detection

用于超灵敏和多重数字分辨率生物分子检测的工程量子点和光子超材料

基本信息

项目摘要

This project will develop highly sensitive approaches for detecting many disease-related molecules, called “biomarkers,” in blood at the same time. These biomarkers will be detected by binding to light-emitting nanoparticles, called Quantum Dots (QDs), that serve as a bright tag. By designing QDs to be easily distinguished from each other, the research team envisions the capability to detect as many as 45 different biomarkers in a single blood droplet. Biomarker detection will be performed on engineered surfaces called “photonic crystals” (PCs) that are able to amplify the QD brightness by several thousand-fold, allowing QDs to be counted individually. The PCs also serve to direct the QD light output in specific directions that are measured to tell the difference between each type of QD. In addition, new approaches will be developed that can rapidly convert each biomarker molecule into many QDs on the PC surface. By combining PCs and QDs, the sensor can be simple, fast, and inexpensive, enabling biomarker tests to be performed in places like clinics and hospitals. The Team will develop a broadly accessible short course entitled “What’s in Your Blood? Genomics Testing and You,” to be offered through the Osher Lifelong Learning Institute. Aspects of the course will be adapted for public-facing programs offered through the Woese Institute for Genomic Biology and an interactive display at “World of Genomics” events that are offered annually at large science museums.Ultrasensitive, ultraselective, and highly multiplexed detection of biomolecules within complex media is a central component of disease diagnostics, life science research, and environmental monitoring. New “digital resolution” biomolecular detection methods are leading toward unprecedented detection limits, but are hindered by complex procedures, thermal cycling, and stringent sample preparation. Recent advances in the capability for photonic metamaterial surfaces to substantially amplify the collected photon output from semiconductor quantum dots are making assays with digital molecule precision compatible with small, low cost instruments. Applying QD tags with photonic crystal fluorescence amplification makes it possible to digitally count target molecules and to perform multiplexing through the ability to distinguish QD emission wavelengths by their outcoupled emission pattern. As a result, single-step, room temperature, enzyme-free assays for microRNA with attomolar-level detection limits and 6 log(10) orders of dynamic range can be achieved, with the potential to extend even further. In this project, the Cunningham and Smith labs will design and synthesize novel QD tags that incorporate engineered multispectral brightness, encodable emission saturation, and encodable PC enhancement factor. The QDs will specifically couple with photonic metamaterial surfaces to enhance their excitation, to modulate their lifetime, and to extract their emission to differentiate up to 45 distinct QD labels for molecular multiplexing. Finally, the team will introduce a new paradigm for biomolecule detection in which each target molecule can generate multiple downstream digital-resolution QD detection events to achieve ultrasensitive detection limits with simple and rapid methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发高度灵敏的方法,同时检测血液中许多与疾病相关的分子(称为“生物标记物”)。这些生物标记物将通过与发光纳米颗粒(称为量子点(QD))结合来检测。通过设计易于区分的量子点,研究小组设想能够在单个血滴中检测多达 45 种不同的生物标记物。被称为“光子晶体”(PC)的量子点亮度可以放大数千倍,从而可以对量子点进行单独计数。这些PC还可以将量子点光输出引导到特定方向,通过测量来区分不同方向。此外,还将开发新的方法,可以将每种生物标记分子快速转化为 PC 表面上的许多 QD。通过将 PC 和 QD 结合起来,传感器可以变得简单、快速且廉价,从而使生物标记测试变得更加容易。该团队将开发一门广泛普及的短期课程,题为“你的血液中有什么?基因组学测试和你”,该课程将通过奥舍尔终身学习研究所提供。面向沃斯基因组生物学研究所提供的项目以及每年在大型科学博物馆举办的“基因组世界”活动中的互动展示。复杂介质中生物分子的超灵敏、超选择性和高度多重检测是疾病诊断、生命科学研究和环境监测的核心组成部分新的“数字分辨率”生物分子检测方法正在实现前所未有的检测极限,但受到复杂的程序、热循环和严格的样品制备的最新进展的阻碍。光子超材料表面能够大幅放大从半导体量子点收集的光子输出,使得数字分子精度测定与小型、低成本仪器兼容,应用具有光子晶体荧光放大功能的量子点标签使得数字计数成为可能。目标分子,并通过其耦合发射模式区分 QD 发射波长的能力进行多重分析,从而实现对 microRNA 的单步、室温、无酶检测,检测限为阿摩尔级,且达到 6 log(10) 级。的动态范围可以实现,并有可能进一步扩展。在这个项目中,坎宁安和史密斯实验室将设计和合成新型量子点标签,其中包含工程多光谱亮度、可编码发射饱和度和量子点将专门与光子超材料表面耦合,以增强其激发,调节其寿命,并提取其发射以区分多达 45 个不同的量子点标签,以进行分子复用。用于生物分子检测,其中每个目标分子可以生成多个下游数字分辨率量子点检测事件,以通过简单快速的方法实现超灵敏的检测极限。该奖项授予 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Cunningham其他文献

Silicon Electrolyte Interface Stabilization (SEISta), Quarter 2, FY20
硅电解质界面稳定 (SEISta),2020 财年第 2 季度
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anthony Burrell;Brian Cunningham
  • 通讯作者:
    Brian Cunningham
Induction of tolerance in composite-tissue allografts
复合组织同种异体移植物耐受的诱导
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    M. Siemionow;T. Ortak;D. Iżycki;Ramadan Oke;Brian Cunningham;Rita Prajapati;J. Zins
  • 通讯作者:
    J. Zins
Swimming Anatomy and Lower Back Injuries in Competitive Swimmers: A Narrative Review.
游泳解剖学和竞技游泳运动员的下背部损伤:叙事回顾。
  • DOI:
    10.1177/19417381231225213
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Connie Hsu;Brian Krabak;Brian Cunningham;Joanne Borg
  • 通讯作者:
    Joanne Borg

Brian Cunningham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Cunningham', 18)}}的其他基金

I-Corps: Blood analyzer to detect Bovine Respiratory Disease by using blood cell counts and morphology
I-Corps:利用血细胞计数和形态检测牛呼吸道疾病的血液分析仪
  • 批准号:
    2143132
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
RAPID: A rapid and ultrasensitive technology for sensing intact SARS-CoV-2 using designer DNA nanostructure capture probes and photonic resonator interference scattering microscopy
RAPID:一种快速、超灵敏的技术,使用设计的 DNA 纳米结构捕获探针和光子谐振器干涉散射显微镜来感测完整的 SARS-CoV-2
  • 批准号:
    2027778
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Photonic resonator hybrids for ultrasensitive biosensing
用于超灵敏生物传感的光子谐振器混合体
  • 批准号:
    1900277
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
PFI-TT: Clip-On Smartphone Biosensor for Mobile Health Diagnostics
PFI-TT:用于移动健康诊断的夹式智能手机生物传感器
  • 批准号:
    1919015
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
UNS:Multiresonator Photonic Crystal Enhanced Fluorescence and SERS
UNS:多谐振器光子晶体增强荧光和 SERS
  • 批准号:
    1512043
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
PFI:BIC - Pathtracker: A smartphone-based system for mobile infectious disease detection and epidemiology
PFI:BIC - Pathtracker:基于智能手机的移动传染病检测和流行病学系统
  • 批准号:
    1534126
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: Lab-in-a-Smartphone
EAGER:智能手机实验室
  • 批准号:
    1447893
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
2014 National Science Foundation Workshop on Food Safety-Global Supply Chain Research Needs
2014年美国国家科学基金会食品安全研讨会——全球供应链研究需求
  • 批准号:
    1448172
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Multimode Smartphone Biosensor
多模式智能手机生物传感器
  • 批准号:
    1264377
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
I/UCRC: Center for Innovation Instrumentation Technology (CIIT)
I/UCRC:创新仪器技术中心 (CIIT)
  • 批准号:
    1067943
  • 财政年份:
    2011
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

自陷域激子量子点能带工程及其光学性质研究
  • 批准号:
    22371090
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
定向缺陷钝化工程和稀土掺杂钙钛矿量子点提高锡铅钙钛矿太阳电池效率及稳定性的研究
  • 批准号:
    12304462
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于基因工程IgG耦合量子点作用机制的石房蛤毒素高灵敏快速检测研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于非重金属ZnSe量子点的能带工程实现纯蓝光发射及高效发光二极管
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于GaN量子点嵌入能带工程的AlN材料n型掺杂的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Convergent Bioengineered Platform for Multifunctional Therapeutic Exosomes
多功能治疗性外泌体的融合生物工程平台
  • 批准号:
    10713513
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Overcoming pressure ulcers with engineered hormones and stem cells
用工程激素和干细胞克服压疮
  • 批准号:
    10821146
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
Chemical toolbox for multiscale, integrative imaging: Connecting cellular gene expression to organ-scale phenotype
用于多尺度综合成像的化学工具箱:将细胞基因表达与器官尺度表型联系起来
  • 批准号:
    10501719
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
Chemical toolbox for multiscale, integrative imaging: Connecting cellular gene expression to organ-scale phenotype
用于多尺度综合成像的化学工具箱:将细胞基因表达与器官尺度表型联系起来
  • 批准号:
    10797662
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
Chemical toolbox for multiscale, integrative imaging: Connecting cellular gene expression to organ-scale phenotype
用于多尺度综合成像的化学工具箱:将细胞基因表达与器官尺度表型联系起来
  • 批准号:
    10709587
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了