Collaborative Research: Deciphering the nanoscale interactions during mineral nucleation and scale formation on polymer surfaces

合作研究:破译聚合物表面矿物成核和结垢过程中的纳米级相互作用

基本信息

  • 批准号:
    2232686
  • 负责人:
  • 金额:
    $ 28.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Mineral precipitation, or the formation of solid mineral phases from solutions, is a process of great importance in the natural environment and engineered systems. Mineral scaling on surfaces, or the unwanted deposition of mineral precipitates, poses a technological challenge to many industrial processes. In membrane-based water treatment, mineral scaling of polymer membranes decreases membrane flux, diminishes energy efficiency, and shortens membrane module lifespan. In the oil and gas industry, mineral scale deposition on the interior surface of pipes can result in complete blockage of pipelines and disrupt oil and gas production. Despite its importance, the role of polymeric solid substrates on mineral scaling is poorly understood. This research aims to understand how the surface characteristics of polymers impact the formation of mineral scales. The investigators will employ combined experimental characterization and theoretical analysis to examine the nanoscale interactions that drive mineral scale formation on polymeric substrates. The findings of this work will inform design of anti-scaling polymer surfaces in submerged aqueous environments, which will bring significant economic benefits to industries in which mineral scaling plagues system performance and long-term durability. This research project will provide outreach activities through public engagement at both George Washington University and University of Maryland. The investigators will host a yearly student-run symposium on environmental nanoscience, and host high school student interns and deliver guest lectures to local high school students. Mineral scaling on surfaces, or the unwanted deposition of mineral precipitates, is a ubiquitous yet unwanted phenomenon in many industrial processes including reverse osmosis, water desalination, heat exchangers, and oil and gas production. One promising strategy for mitigating scaling is to modify polymer surface characteristics or apply polymer coatings to non-polymer surfaces to render the surface scaling resistant. Currently, there is a significant knowledge gap in understanding the nanoscale interactions and physicochemical processes in the initial stages of scale formation on polymers. This knowledge gap limits rational development of scaling-resistant membranes and surface polymer coatings. In this research, the investigators will integrate liquid phase transmission electron microscopy, real-time measurement of scale formation dynamics using quartz crystal microbalance, and theoretical modeling to establish nucleation mechanisms during scaling of silica and gypsum on polyamide surfaces. The research objectives are to 1) investigate the effect of surface charge and hydrophobicity of polyamide films prepared via molecular layer-by-layer assembly on mineral scaling rate, 2) employ liquid phase transmission electron microscopy to visualize and quantify mineral nucleation dynamics on polyamide surfaces in real time at the nanometer length scale and 3) derive theoretical models for nanoparticle attachment and nucleation kinetics to identify the nanoscale interactions involved in scale formation as a function of polymer surface chemistry. The results of this work will facilitate rational manipulation of nanoscale mineral-membrane interactions to prevent mineral scaling on engineering polymers in the aqueous environment. Educational and outreach aspects of the project will incorporate research findings into undergraduate and graduate course materials, host joint student-run nanomaterial and water symposia, and enhance the participation of underrepresented students in research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
矿物沉淀或从溶液中形成固体矿物相,是自然环境和工程系统中非常重要的过程。在表面上的矿物缩放或矿物沉淀的不良沉积对许多工业过程构成了技术挑战。在基于膜的水处理中,聚合物膜的矿物质缩放缩放可降低膜通量,降低能源效率,并缩短膜模块寿命。在石油和天然气行业中,管道内部表面上的矿物质规模沉积会导致管道完全阻塞并破坏石油和天然气的生产。尽管它的重要性,但对聚合物固体底物在矿物缩放尺度上的作用知之甚少。 这项研究旨在了解聚合物的表面特征如何影响矿物量表的形成。研究人员将采用合并的实验表征和理论分析来检查驱动聚合物底物上矿物量表形成的纳米相互作用。这项工作的发现将为淹没水环境中的抗缩放聚合物表面的设计提供信息,这将为矿物质规模损害系统性能和长期耐用性的行业带来巨大的经济利益。该研究项目将通过乔治华盛顿大学和马里兰大学的公众参与来提供外展活动。调查人员将在环境纳米科学上举办年度学生举办的研讨会,并主持高中生实习生,并向当地的高中生讲座。在许多工业过程中,包括无处不在但不必要的现象,包括反渗透,水性脱盐,热交换器以及石油和天然气生产,是无处不在但不必要的现象。缓解缩放缩放的一种有希望的策略是修改聚合物表面特征或将聚合物涂层应用于非聚合物表面以使表面尺度抗性。当前,在聚合物对量表形成的初始阶段中,了解纳米级相互作用和物理化学过程存在很大的知识差距。这种知识差距限制了耐缩放膜和表面聚合物涂层的合理发展。在这项研究中,研究人员将使用石英晶体微量平衡的液相传输电子显微镜,对量表形成动力学的实时测量以及理论建模,以在聚酰胺表面上的硅胶和石膏缩放期间建立成核机制。研究目标是1)研究通过逐层组装制备的多酰胺膜对矿物缩放率制备的聚酰胺膜的影响,2)采用液体相传感器电子显微镜,可视化和量化矿物质成核动力学对在NANMOINE尺度上的衍生尺度和3)衍生于多酰胺表面的矿物质成核动力学对纳米尺度的范围范围,并3)范围范围的范围。3)纳米级相互作用涉及比例形成,这是聚合物表面化学的函数。这项工作的结果将有助于对纳米级矿物膜相互作用的合理操纵,以防止在水性环境中对工程聚合物的矿物质缩放。该项目的教育和外向方面将将研究结果纳入本科和研究生课程材料,主持学生经营的纳米材料和水研讨会,并增强了代表性不足的学生参与研究的参与。这项奖项反映了NSF的法规任务,并被认为是通过基金会的知识优点和广泛的范围来评估的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xitong Liu其他文献

Effect of increased gonadotropin dosing on maternal and neonatal outcomes in predicted poor responders undergoing IVF: follow-up of a randomized trial.
增加促性腺激素剂量对接受 IVF 的预测反应不良者的孕产妇和新生儿结局的影响:随机试验的随访。
Probing the Affinity of Coronavirus with Contact Surfaces in Simulated Body Fluids
在模拟体液中探测冠状病毒与接触表面的亲和力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yarong Qi;Xun Guan;Yun Shen;Xitong Liu
  • 通讯作者:
    Xitong Liu
Entity Centric Information Retrieval
  • DOI:
    10.1145/2964797.2964815
  • 发表时间:
    2016-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xitong Liu
  • 通讯作者:
    Xitong Liu
Influence of SolutionChemistry and Soft Protein Corona on the Interactions of Silver Nanoparticleswith Model Biological Membranes
溶液化学和软蛋白电晕对银纳米粒子与模型生物膜相互作用的影响
Comparison of natural cycles versus hormone replacement treatment cycles for endometrial preparation prior to frozen-thawed embryo transfer: a retrospective cohort study from 9733 cycles
冻融胚胎移植前子宫内膜准备的自然周期与激素替代治疗周期的比较:9733 个周期的回顾性队列研究
  • DOI:
    10.22541/au.160467852.27020333/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xitong Liu;Hui Wang;H. Cai;Juan
  • 通讯作者:
    Juan

Xitong Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xitong Liu', 18)}}的其他基金

Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
  • 批准号:
    2307223
  • 财政年份:
    2024
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Coupling of Inorganic Scaling and Organic Fouling in Reverse Osmosis Desalination: An Integrated Experimental and Computational Approach
合作研究:阐明反渗透海水淡化中无机结垢和有机污垢的耦合:一种综合实验和计算方法
  • 批准号:
    2143508
  • 财政年份:
    2022
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光矢量调制的高速物理层加解密技术研究
  • 批准号:
    62001040
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
智能响应微纳激光器的可控构筑及用于信息存储与加解密的研究
  • 批准号:
    21905145
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
公钥密码的格分析优化方法研究
  • 批准号:
    61702505
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于全息加密技术与密文压缩的光学解密图像验证系统研究
  • 批准号:
    61605165
  • 批准年份:
    2016
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
“解密型”组织因子靶向性多肽在易损斑块早期诊断中的研究
  • 批准号:
    81570116
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Deciphering Host- and Environment-dependencies in the Legume-Rhizobia Symbiosis by Dual-Seq Transcriptomics and Directed Genome Engineering
合作研究:RESEARCH-PGR:通过双序列转录组学和定向基因组工程破译豆科植物-根瘤菌共生中的宿主和环境依赖性
  • 批准号:
    2243819
  • 财政年份:
    2023
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Deciphering Host- and Environment-dependencies in the Legume-Rhizobia Symbiosis by Dual-Seq Transcriptomics and Directed Genome Engineering
合作研究:RESEARCH-PGR:通过双序列转录组学和定向基因组工程破译豆科植物-根瘤菌共生中的宿主和环境依赖性
  • 批准号:
    2243821
  • 财政年份:
    2023
  • 资助金额:
    $ 28.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了