Collaborative Research: RESEARCH-PGR: Deciphering Host- and Environment-dependencies in the Legume-Rhizobia Symbiosis by Dual-Seq Transcriptomics and Directed Genome Engineering

合作研究:RESEARCH-PGR:通过双序列转录组学和定向基因组工程破译豆科植物-根瘤菌共生中的宿主和环境依赖性

基本信息

  • 批准号:
    2243819
  • 负责人:
  • 金额:
    $ 31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Plants live in close association with bacteria. Some of these associations have little effect on plant growth, some are harmful to plants, and some benefit plants by providing essential nutrients or other benefits. The most important of these beneficial associations occurs between rhizobia bacteria and their legume hosts, which include agriculturally important species such as soybeans, peas, and alfalfa. This association is important because the bacteria, when living with plants, provide plants with nitrogen through a process called nitrogen fixation. Because nitrogen is an essential nutrient that often limits plant growth, this association supports plant productivity in both natural and agricultural settings while greatly reducing the need for nitrogen fertilizer, an economically and environmentally expensive input to agricultural systems. This project will use an integrative approach to identify the plant legume and rhizobia genes that work together to control the efficacy of nitrogen fixation. The researchers will use manipulative experiments to measure the benefits that each of eighteen host species gain when growing in association with each of two species of rhizobia bacteria. These same experiments will also be used to assay which plant and rhizobial genes are being expressed in each plant-rhizobia pair, and then statistical analyses will identify groups of genes that have similar expression patterns. The experiment promises to identify gene modules that contain plant genes that control rhizobia genes and rhizobia genes that control plant genes. By examining multiple plant species and multiple environments, the proposed work will identify genes essential for nitrogen fixation and genes that can be modified to manipulate nitrogen fixation in specific environments. To verify gene function, the researchers will engineer bacteria genomes with genes of interest and then measure how these engineered bacteria affect plant growth. The results of the work will provide tools to manipulate the legume-rhizobia symbiosis to increase the benefits it provides to agricultural systems. The project will train scientists in new approaches and data analyses and develop materials for hands-on STEM courses for undergraduate students. Most genetic analyses of the legume-rhizobia symbiosis have been conducted in unrealistic environments, where plants rely entirely on nitrogen supplied by a single rhizobium strain. The extent to which results from these studies can be extrapolated across species and environments remains an open question that is critical for refining predictions about symbiosis genomics, including the societal goal of improving plant health. This project will build on the foundational knowledge from the Medicago truncatula-Sinorhizobium meliloti symbiosis by using dual-seq host-symbiont transcriptome data from a broad range of Medicago host species (18 species) and two Sinorhizobium species, across a range of field-relevant nitrogen fertilizer levels. The researchers will use differential expression analyses and two-species coexpression networks to identify both host and symbiont genes with expression that is associated with symbiotic performance. Of particular interest are coexpression modules that are enriched for both plant and microbe genes as well as plant-microbe gene pairs with coordinated expression (i.e., strong edges in the coexpression network). The function of a subset of candidates will be validated by adding them to a minimum symbiotic genome, a powerful genomic engineering approach for gain of function assays. By identifying genes that play a role in adaptation to specific hosts and nitrogen environments, the project will contribute to the goal of untangling the interspecific genetic crosstalk that control plant-microbe symbiosis and that hold the key to optimizing this symbiosis for plant health. All project outcomes will be freely available through long term data and resource repositories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物与细菌密切相关。其中一些关联对植物生长几乎没有影响,一些对植物有害,一些通过提供必需的营养或其他益处而使植物受益。这些有益关联中最重要的是根瘤菌与其豆类宿主之间的关系,其中包括农业上重要的物种,如大豆、豌豆和苜蓿。这种关联很重要,因为细菌在与植物共存时,通过称为固氮的过程为植物提供氮。由于氮是一种经常限制植物生长的必需营养素,因此这种关联支持自然和农业环境中的植物生产力,同时大大减少对氮肥的需求,氮肥是农业系统中经济和环境昂贵的投入。该项目将采用综合方法来识别植物豆科植物和根瘤菌基因,它们共同控制固氮功效。研究人员将使用操作实验来测量十八种宿主物种中的每一种在与两种根瘤菌中的每一种结合生长时获得的益处。 这些相同的实验还将用于测定每个植物-根瘤菌对中表达的植物和根瘤菌基因,然后统计分析将识别具有相似表达模式的基因组。 该实验有望鉴定出包含控制根瘤菌基因的植物基因和控制植物基因的根瘤菌基因的基因模块。 通过检查多种植物物种和多种环境,拟议的工作将确定固氮所必需的基因以及可以修改以操纵特定环境中固氮的基因。为了验证基因功能,研究人员将用感兴趣的基因改造细菌基因组,然后测量这些改造细菌如何影响植物生长。这项工作的结果将为操纵豆科植物-根瘤菌共生提供工具,以增加其为农业系统带来的效益。该项目将为科学家提供新方法和数据分析方面的培训,并为本科生的 STEM 实践课程开发材料。大多数豆科植物-根瘤菌共生的遗传分析都是在不现实的环境中进行的,在这种环境中,植物完全依赖于单一根瘤菌菌株提供的氮。这些研究结果在多大程度上可以跨物种和环境推断仍然是一个悬而未决的问题,这对于完善共生基因组学的预测至关重要,包括改善植物健康的社会目标。该项目将建立在蒺藜苜蓿-苜蓿中华根瘤菌共生的基础知识的基础上,通过使用来自广泛的苜蓿宿主物种(18个物种)和两个中华根瘤菌物种的双seq宿主-共生体转录组数据,跨越一系列领域相关的研究氮肥水平。研究人员将使用差异表达分析和两种物种共表达网络来识别宿主和共生体基因的表达与共生性能相关。特别令人感兴趣的是富含植物和微生物基因以及具有协调表达(即共表达网络中的强边缘)的植物-微生物基因对的共表达模块。候选子集的功能将通过将其添加到最小共生基因组中来验证,这是一种用于获得功能测定的强大基因组工程方法。通过识别在适应特定宿主和氮环境中发挥作用的基因,该项目将有助于解决控制植物-微生物共生的种间遗传串扰的目标,这也是优化植物健康共生的关键。所有项目成果都将通过长期数据和资源存储库免费提供。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liana Burghardt其他文献

Liana Burghardt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 31万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了